Robot domestiquethumb|Robot domestique nettoyant une vitre.|alt=le film montre un robot nettoyeur allant et venant sur une vitre de fenêtre en position verticale Un robot domestique est un robot de service personnel utilisé pour des tâches ménagères. On estime à le nombre de robots domestiques en 2006, avec une estimation de robots industriels. Les robots domestiques sont utilisés par exemple en vaisselle, en repassage, en nettoyage et en cuisine. Ils peuvent également être utilisés dans le domaine de la restauration et dans la construction.
Paramètres SLes paramètres S (de l'anglais Scattering parameters), coefficients de diffraction ou de répartition sont utilisés en hyperfréquences, en électricité ou en électronique pour décrire le comportement électrique de réseaux électriques linéaires en fonction des signaux d'entrée. Ces paramètres font partie d'une famille de formalismes similaires, utilisés en électronique, en physique ou en optique : les paramètres Y, les paramètres Z, les paramètres H, les paramètres T ou les paramètres ABCD.
Combat de robotsvignette|Deux robots en combat lors d'un événement RoboCore vignette|, deux fois champion du monde de Robot Wars Le combat de robots est un mode de compétition de robots dans lequel des machines construites sur mesure se battent en utilisant diverses méthodes pour se neutraliser mutuellement. Les machines sont généralement des véhicules télécommandés plutôt que des robots autonomes. Les compétitions de combat de robots ont fait l'objet de séries télévisées, notamment au Royaume-Uni et Battlebots : Le Choc des robots aux États-Unis.
CovarianceEn théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance.
Robotique industriellevignette|droite|Un robot industriel Kawasaki FS-03N, robot de soudage La robotique industrielle est officiellement définie par l'Organisation Internationale de Normalisation (ISO) comme étant un système commandé automatiquement, multi-applicatif, reprogrammable, polyvalent, manipulateur et programmable sur trois axes ou plus. Les applications typiques incluent les robots de soudage, de peinture et d'assemblage. L'avantage de la robotique industrielle est sa rapidité d'exécution et sa précision ainsi que la répétition de cette précision dans le temps.
Cross-covariance matrixIn probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Admittance parametersAdmittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters.
Estimating equationsIn statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators. The basis of the method is to have, or to find, a set of simultaneous equations involving both the sample data and the unknown model parameters which are to be solved in order to define the estimates of the parameters.
Robot navigationRobot localization denotes the robot's ability to establish its own position and orientation within the frame of reference. Path planning is effectively an extension of localisation, in that it requires the determination of the robot's current position and a position of a goal location, both within the same frame of reference or coordinates. Map building can be in the shape of a metric map or any notation describing locations in the robot frame of reference. For any mobile device, the ability to navigate in its environment is important.