Résumé
En théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance. La corrélation est une forme normalisée de la covariance (la dimension de la covariance entre deux variables est le produit de leurs dimensions, alors que la corrélation est une grandeur adimensionnelle). Ce concept se généralise naturellement à plusieurs variables (vecteur aléatoire) par la matrice de covariance (ou matrice de variance-covariance) qui, pour un ensemble de p variables aléatoires réelles X... X est la matrice carrée dont l'élément de la ligne i et de la colonne j est la covariance des variables Xi et Xj. Cette matrice permet de quantifier la variation de chaque variable par rapport à chacune des autres. La forme normalisée de la matrice de covariance est la matrice de corrélation. À titre d'exemple, la dispersion d'un ensemble de points aléatoires dans un espace à deux dimensions ne peut pas être totalement caractérisée par un seul nombre, ni par les seules variances dans les directions x et y ; une matrice permet d’appréhender pleinement la nature bidimensionnelle des variations. La matrice de covariance étant une matrice semi-définie positive, elle peut être diagonalisée et l’étude des valeurs propres et vecteurs propres permet de caractériser la distribution à l’aide d’une base orthogonale : cette approche est l'objet de l'analyse en composantes principales qui peut être considérée comme une sorte de compression de l’information. La covariance de deux variables aléatoires réelles X et Y ayant chacune une variance (finie), notée Cov(X, Y) ou parfois σ, est la valeur : où désigne l'espérance mathématique. La variance de X est donc Var(X) = Cov(X, X).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.