Résumé
En théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance. La corrélation est une forme normalisée de la covariance (la dimension de la covariance entre deux variables est le produit de leurs dimensions, alors que la corrélation est une grandeur adimensionnelle). Ce concept se généralise naturellement à plusieurs variables (vecteur aléatoire) par la matrice de covariance (ou matrice de variance-covariance) qui, pour un ensemble de p variables aléatoires réelles X... X est la matrice carrée dont l'élément de la ligne i et de la colonne j est la covariance des variables Xi et Xj. Cette matrice permet de quantifier la variation de chaque variable par rapport à chacune des autres. La forme normalisée de la matrice de covariance est la matrice de corrélation. À titre d'exemple, la dispersion d'un ensemble de points aléatoires dans un espace à deux dimensions ne peut pas être totalement caractérisée par un seul nombre, ni par les seules variances dans les directions x et y ; une matrice permet d’appréhender pleinement la nature bidimensionnelle des variations. La matrice de covariance étant une matrice semi-définie positive, elle peut être diagonalisée et l’étude des valeurs propres et vecteurs propres permet de caractériser la distribution à l’aide d’une base orthogonale : cette approche est l'objet de l'analyse en composantes principales qui peut être considérée comme une sorte de compression de l’information. La covariance de deux variables aléatoires réelles X et Y ayant chacune une variance (finie), notée Cov(X, Y) ou parfois σ, est la valeur : où désigne l'espérance mathématique. La variance de X est donc Var(X) = Cov(X, X).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MATH-342: Time series
A first course in statistical time series analysis and applications.
MICRO-570: Advanced machine learning
This course will present some of the core advanced methods in the field for structure discovery, classification and non-linear regression. This is an advanced class in Machine Learning; hence, student
MATH-234(a): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
Afficher plus
Séances de cours associées (118)
Génération gaussienne conditionnelle
Explore la génération de distributions gaussiennes multivariées et les défis de la factorisation des matrices de covariance.
Analyse des composantes principales : propriétés et applications
Explorer la théorie principale de l'analyse des composants, les propriétés, les applications et les tests d'hypothèse dans les statistiques multivariées.
Composantes principales : Propriétés et applications
Explore les principales composantes, la covariance, la corrélation, le choix et les applications dans l'analyse des données.
Afficher plus
Publications associées (111)

RANDOMIZED JOINT DIAGONALIZATION OF SYMMETRIC

Daniel Kressner, Haoze He

Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...
Philadelphia2024
Afficher plus
Concepts associés (25)
Covariance matrix
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Pearson correlation coefficient
In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Vecteur aléatoire
Un vecteur aléatoire est aussi appelé variable aléatoire multidimensionnelle. Un vecteur aléatoire est une généralisation à n dimensions d'une variable aléatoire réelle. Alors qu'une variable aléatoire réelle est une fonction qui à chaque éventualité fait correspondre un nombre réel, le vecteur aléatoire est une fonction X qui à chaque éventualité fait correspondre un vecteur de : où ω est l'élément générique de Ω, l'espace de toutes les éventualités possibles. Les applications X, ...
Afficher plus