Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission
Publications associées (147)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or severa ...
A fascinating property of the brain is its ability to continuously evolve and adapt to a constantly changing environment. This ability to change over time, called plasticity, is mainly implemented at the level of the connections between neurons (i.e. the s ...
Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs ...
We propose a novel network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, based on biological observations of synaptic plasticity. The model is furt ...
Minimal nonlinear dynamic neuron models of the generic bifurcation type may provide the middle way between the detailed models favored by experimentalists and the simplified threshold and rate model of computational neuroscientists. This thesis investigate ...
The spike-triggered average voltage (STV) is an experimentally measurable quantity that is determined by both the membrane response properties and the statistics of the synaptic drive. Here, the form of the STV is modelled for neurons with three distinct t ...
Neurons generate spikes reliably with millisecond precision if driven by a fluctuating current—is it then possible to predict the spike timing knowing the input? We determined parameters of an adapting threshold model using data recorded in vitro from 24 l ...
Classical experiments on spike timing-dependent plasticity (STDP) use a protocol based on pairs of presynaptic and postsynaptic spikes repeated at a given frequency to induce synaptic potentiation or depression. Therefore, standard STDP models have express ...
We describe evolution of spiking neural architectures to control navigation of autonomous mobile robots. Experimental results with simple fitness functions indicate that evolution can rapidly generate spiking circuits capable of navigating in textured envi ...
Neurons in the central nervous system, and in the cortex in particular, are subject to a barrage of pulses from their presynaptic populations. These synaptic pulses are mediated by conductance changes and therefore lead to increases or decreases of the neu ...