Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Neurons generate spikes reliably with millisecond precision if driven by a fluctuating current—is it then possible to predict the spike timing knowing the input? We determined parameters of an adapting threshold model using data recorded in vitro from 24 l ...
Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs ...
We describe evolution of spiking neural architectures to control navigation of autonomous mobile robots. Experimental results with simple fitness functions indicate that evolution can rapidly generate spiking circuits capable of navigating in textured envi ...
We propose a novel network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, based on biological observations of synaptic plasticity. The model is furt ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or severa ...
A fascinating property of the brain is its ability to continuously evolve and adapt to a constantly changing environment. This ability to change over time, called plasticity, is mainly implemented at the level of the connections between neurons (i.e. the s ...
Minimal nonlinear dynamic neuron models of the generic bifurcation type may provide the middle way between the detailed models favored by experimentalists and the simplified threshold and rate model of computational neuroscientists. This thesis investigate ...
Neurons in the central nervous system, and in the cortex in particular, are subject to a barrage of pulses from their presynaptic populations. These synaptic pulses are mediated by conductance changes and therefore lead to increases or decreases of the neu ...
Classical experiments on spike timing-dependent plasticity (STDP) use a protocol based on pairs of presynaptic and postsynaptic spikes repeated at a given frequency to induce synaptic potentiation or depression. Therefore, standard STDP models have express ...
The spike-triggered average voltage (STV) is an experimentally measurable quantity that is determined by both the membrane response properties and the statistics of the synaptic drive. Here, the form of the STV is modelled for neurons with three distinct t ...