Enzymeredresse=1.5|vignette| Représentation d'une α-glucosidase () avec à sa droite le substrat au-dessus des produits de réaction . redresse=1.5|vignette|Diagramme d'une réaction catalysée montrant l'énergie E requise à différentes étapes suivant l'axe du temps t. Les substrats A et B en conditions normales requièrent une quantité d'énergie E1 pour atteindre l'état de transition A...B, à la suite duquel le produit de réaction AB peut se former. L'enzyme E crée un microenvironnement dans lequel A et B peuvent atteindre l'état de transition A.
Chaîne (théorie des graphes)Dans un graphe non orienté, une chaîne reliant à , notée , est définie par une suite finie d'arêtes consécutives, reliant à . La notion correspondante dans les graphes orientés est celle de chemin. Une chaîne élémentaire est une chaîne ne passant pas deux fois par un même sommet, c'est-à-dire dont tous les sommets sont distincts. Une chaîne simple est une chaîne ne passant pas deux fois par une même arête, c'est-à-dire dont toutes les arêtes sont distinctes. Un cycle est une chaîne simple dont les deux extrémités sont identiques.
Inhibiteur enzymatiquethumb|upright=1.2|Complexe d'une protéase du VIH (rubans rouges, bleus et jaunes) associée à l'inhibiteur qu'est le ritonavir (petite structure en bâtons et boules près du centre). Un inhibiteur enzymatique est une substance se liant à une enzyme et qui en diminue l'activité. Un inhibiteur peut empêcher la fixation du substrat sur le site actif en se fixant à sa place, ou provoquer une déformation de l'enzyme qui rend celle-ci inactive (inhibiteur allostérique).
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Voie métaboliqueUne voie métabolique est un ensemble de réactions chimiques catalysées par une série d'enzymes qui agissent de manière séquentielle. Chaque réaction constitue une étape d'un processus complexe de synthèse ou de dégradation d'une molécule biologique finale. Dans une voie métabolique, le produit de la réaction catalysée par une enzyme sert de substrat pour la réaction suivante. Les voies métaboliques peuvent être linéaires, ramifiées (ou branchées), voire cycliques.
Lexique de la théorie des graphesNOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Réaction chimiqueUne réaction chimique est une transformation de la matière au cours de laquelle les espèces chimiques qui constituent la matière sont modifiées. Les espèces qui sont consommées sont appelées réactifs ; les espèces formées au cours de la réaction sont appelées produits. Depuis les travaux de Lavoisier (1777), les scientifiques savent que la réaction chimique se fait sans variation mesurable de la masse : , qui traduit la conservation de la masse. thumb|La réaction aluminothermique est une oxydo-réduction spectaculaire.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Connectivity (graph theory)In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.