Matrice d'adjacenceEn mathématiques, en théorie des graphes, en informatique, une matrice d'adjacence pour un graphe fini à n sommets est une matrice de dimension n × n dont l'élément non diagonal a est le nombre d'arêtes liant le sommet i au sommet j. L'élément diagonal a est le nombre de boucles au sommet i (pour des graphes simples, ce nombre est donc toujours égal à 0 ou 1). Cet outil mathématique est très utilisé comme structure de données en informatique (tout comme la représentation par liste d'adjacence), mais intervient aussi naturellement dans les chaînes de Markov.
Ensembles disjointsvignette|Trois ensembles disjoints En mathématiques, deux ensembles sont dits disjoints s'ils n'ont pas d'éléments en commun. Par exemple, et sont deux ensembles disjoints. De manière formelle, deux ensembles A et B sont disjoints si leur intersection est l'ensemble vide, c'est-à-dire si (Dans le cas contraire, on dit que A et B « se rencontrent ».) Cette définition s'étend à une famille d'ensembles. Les ensembles d'une famille sont dits disjoints deux à deux ou mutuellement disjoints si deux ensembles quelconques de cette famille sont disjoints.
Ensemble flouLa théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Décimal codé binaireLe décimal codé binaire (DCB) (binary coded decimal ou BCD en anglais), est un système de numération utilisé en électronique numérique et en informatique pour coder des nombres en se rapprochant de la représentation humaine usuelle, en base 10. Dans ce format, les nombres sont représentés par un ou plusieurs chiffres compris entre 0 et 9, et chacun de ces chiffres est codé sur quatre bits : Chiffre Bits 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 Ainsi, pour coder un nombre tel que 127, il suffit de coder chacun des chiffres 1, 2 et 7 séparément, et l'on obtient la valeur 0001 0010 0111.
Théorie des ensembles approximatifsThéorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).
Forbidden graph characterizationIn graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
ArithmétiqueL'arithmétique est la branche des mathématiques qui étudie les nombres entiers naturels , relatifs et rationnels , voire réels , ainsi que leurs relations et propriétés, en lien avec quelques opérations élémentaires : addition (+), soustraction (−), multiplication (×), division (÷, /, ou :), puissance et racine (). Le terme inclut parfois d'autres concepts de la théorie des nombres. Le mot arithmétique vient du grec ancien , « nombre ». L’origine de l'arithmétique semble être une invention phénicienne.
Relation binaireEn mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien E × F, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont dits en relation par R. Une relation binaire est parfois appelée correspondance entre les deux ensembles.
Algorithmic efficiencyIn computer science, algorithmic efficiency is a property of an algorithm which relates to the amount of computational resources used by the algorithm. An algorithm must be analyzed to determine its resource usage, and the efficiency of an algorithm can be measured based on the usage of different resources. Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process. For maximum efficiency it is desirable to minimize resource usage.