We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis ...
We show that including pairing and repulsion into the description of one-dimensional spinless fermions, as in the domain wall theory of commensurate melting or the interacting Kitaev chain, leads, for strong enough repulsion, to a line of critical points i ...
Bound-states of particles are an interesting problem in quantum mechanics dating back to 1931 Bethe's solution of spin-1/2 Heisenberg chain. These exotic composite states are realized in quantum magnets and are detectable in inelastic neutron scattering (I ...
The dynamics of the S = 3/2 kagome antiferromagnet chromium jarosite, KCr3(OD)(6)(SO4)(2), was studied using high-resolution neutron time-of-flight spectroscopy on a polycrystalline sample with a nearly stoichiometric magnetic lattice [2.8(2)% Cr vacancies ...
Random spin models play a key role in our understanding of disorder and complex many-body systems. Two all-to-all interacting, disordered models have now been realized using a cavity quantum electrodynamics platform. ...
In this manuscript, we present a collective multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty, and develop a novel convergence analysis of collective ...
Titanium has become in recent years an interesting material in many applications that require a combination of high mechanical properties and low density. It has the peculiarity of undergoing an allotropic transformation at 882°C. Below this temperature, ...
Deep learning has achieved remarkable success in various challenging tasks such as generating images from natural language or engaging in lengthy conversations with humans.
The success in practice stems from the ability to successfully train massive neural ...
Quantum spin liquids are highly entangled magnetic states with exotic properties. The S = 1/2 square-lattice Heisenberg model is one of the foundational models in frustrated magnetism with a predicted, but never observed, quantum spin liquid state. Isostru ...