Largeur arborescenteEn théorie des graphes et en informatique théorique, la largeur arborescente ou largeur d'arbre d'un graphe (treewidth en anglais) est un nombre qui, intuitivement, mesure s'il est proche d'un arbre. Elle peut être définie de plusieurs manières, notamment en utilisant la décomposition arborescente. Souvent, un problème algorithmique facile sur les arbres est en fait facile pour les graphes qui ressemblent à des arbres. Ainsi, ce paramètre est souvent utilisé en algorithmique de graphes, notamment pour les schémas d'approximation polynomiaux et complexité paramétrée.
Largeur de cliquevignette|upright=1.6|Construction d'un graphe (ici un graphe à distance héréditaire) de largeur de clique 3 par une succession d'unions disjointes, de renommages et de fusions d'étiquettes. Les étiquettes des sommets sont affichées sous forme de couleurs. En théorie des graphes, la largeur de clique d'un graphe est l'un des paramètres qui décrit la complexité structurelle du graphe ; il est étroitement lié à largeur arborescente, mais contrairement à celle-ci, elle peut être bornée même pour des graphes denses .
Décomposition arborescenteEn théorie des graphes, une décomposition arborescente ou décomposition en arbre (en anglais : tree-decomposition) consiste en une décomposition d'un graphe en séparateurs (sous-ensembles de sommets dont la suppression rend le graphe non connexe), connectés dans un arbre. Cette décomposition permet de définir une autre notion importante, la largeur arborescente ou largeur d'arbre (treewidth). Cette méthode a été proposée par Paul Seymour et Neil Robertson dans le cadre de leur théorie sur les mineurs d'un graphe.
Tree-depthIn graph theory, the tree-depth of a connected undirected graph is a numerical invariant of , the minimum height of a Trémaux tree for a supergraph of . This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of directed graphs and the star height of regular languages.
Théorème de CourcelleEn algorithmique et en théorie de la complexité, le théorème de Courcelle est le suivant : C'est un métathéorème, dans le sens où il concerne une classe de problèmes algorithmiques. Le théorème est dû à Bruno Courcelle. Dans le contexte de ce théorème, un graphe est donné par un ensemble de sommets et une relation d'adjacence , et la restriction à la logique monadique signifie que la propriété étudiée peut contenir des quantificateurs sur des ensembles de sommets (quantificateurs du second ordre sur des prédicats monadiques), mais pas de quantificateurs sur des ensembles d'arcs (ces quantificateurs du second ordre porteraient sur des prédicats binaires).
Graphe completEn théorie des graphes, un graphe complet est un graphe simple dont tous les sommets sont adjacents deux à deux, c'est-à-dire que tout couple de sommets disjoints est relié par une arête. Si le graphe est orienté, on dit qu'il est complet si chaque paire de sommets est reliée par exactement deux arcs (un dans chaque sens). Un graphe complet est un graphe dont tous les sommets sont adjacents. À isomorphisme près, il n'existe qu'un seul graphe complet non orienté d'ordre n, que l'on note .
Graphe biparti completEn théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .
Apex graphIn graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is an apex, not the apex because an apex graph may have more than one apex; for example, in the minimal nonplanar graphs K_5 or K_3,3, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove.
Multipartite graphIn graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the tripartite graphs. Bipartite graphs may be recognized in polynomial time but, for any k > 2 it is NP-complete, given an uncolored graph, to test whether it is k-partite.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.