In graph theory, the tree-depth of a connected undirected graph is a numerical invariant of , the minimum height of a Trémaux tree for a supergraph of . This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of directed graphs and the star height of regular languages. Intuitively, where the treewidth of a graph measures how far it is from being a tree, this parameter measures how far a graph is from being a star.
The tree-depth of a graph may be defined as the minimum height of a forest with the property that every edge of connects a pair of nodes that have an ancestor-descendant relationship to each other in . If is connected, this forest must be a single tree; it need not be a subgraph of , but if it is, it is a Trémaux tree for .
The set of ancestor-descendant pairs in forms a trivially perfect graph, and the height of is the size of the largest clique in this graph. Thus, the tree-depth may alternatively be defined as the size of the largest clique in a trivially perfect supergraph of , mirroring the definition of treewidth as one less than the size of the largest clique in a chordal supergraph of .
Another definition is the following:
where is the set of vertices of and the are the connected components of . This definition mirrors the definition of cycle rank of directed graphs, which uses strong connectivity and strongly connected components in place of undirected connectivity and connected components.
Tree-depth may also be defined using a form of graph coloring. A centered coloring of a graph is a coloring of its vertices with the property that every connected induced subgraph has a color that appears exactly once. Then, the tree-depth is the minimum number of colors in a centered coloring of the given graph. If is a forest of height with the property that every edge of connects an ancestor and a descendant in , then a centered coloring of using colors may be obtained by coloring each vertex by its distance from the root of its tree in .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
Explore le lemme de régularité Szemerédi, la régularité électronique dans les graphes bipartites, la structure des supergraphes et les techniques d'induction.
En théorie des graphes, la dégénérescence est un paramètre associé à un graphe non orienté. Un graphe est k-dégénéré si tout sous-graphe contient un nœud de degré inférieur ou égal à k, et la dégénérescence d'un graphe est le plus petit k tel qu'il est k-dégénéré. On peut de façon équivalente définir le paramètre en utilisant un ordre sur les sommets (appelé ordre de dégénérescence) tel que, pour tout sommet, le nombre d'arêtes vers des sommets plus petits dans l'ordre est au plus k. On parle alors parfois de nombre de marquage.
In graph theory, a path decomposition of a graph G is, informally, a representation of G as a "thickened" path graph, and the pathwidth of G is a number that measures how much the path was thickened to form G. More formally, a path-decomposition is a sequence of subsets of vertices of G such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition.
En théorie des graphes, un invariant de graphe est une quantité qui n'est pas modifiée par isomorphisme de graphes. Un invariant de graphe ne dépend donc que de la structure abstraite et pas des particularités de la représentation comme l'étiquetage ou le tracé. De nombreux invariants sont conservés par certains préordres ou ordres partiels naturels sur les graphes : Une propriété est monotone si elle est héritée par les sous-graphes. Le caractère biparti, sans triangle, ou planaire sont des exemples de propriétés monotones.
An abstract topological graph (briefly an AT-graph) is a pair A = (G, X) where G = (V, E) is a graph and X. E2 is a set of pairs of its edges. The AT-graph A is simply realizable if G can be drawn in the plane so that each pair of edges from X crosses exac ...
An integer program (IP) is a problem of the form min{f(x):Ax=b,l≤x≤u,x∈Zn}, where A∈Zm×n, b∈Zm, l,u∈Zn, and f:Zn→Z is a separable convex objective function.
The problem o ...
Decision trees have been widely used as classifiers in many machine learning applications thanks to their lightweight and interpretable decision process. This paper introduces Tree in Tree decision graph (TnT), a framework that extends the conventional dec ...
Curran Associates, Inc, (NIPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems)2021