Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In graph theory, the tree-depth of a connected undirected graph is a numerical invariant of , the minimum height of a Trémaux tree for a supergraph of . This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of directed graphs and the star height of regular languages. Intuitively, where the treewidth of a graph measures how far it is from being a tree, this parameter measures how far a graph is from being a star. The tree-depth of a graph may be defined as the minimum height of a forest with the property that every edge of connects a pair of nodes that have an ancestor-descendant relationship to each other in . If is connected, this forest must be a single tree; it need not be a subgraph of , but if it is, it is a Trémaux tree for . The set of ancestor-descendant pairs in forms a trivially perfect graph, and the height of is the size of the largest clique in this graph. Thus, the tree-depth may alternatively be defined as the size of the largest clique in a trivially perfect supergraph of , mirroring the definition of treewidth as one less than the size of the largest clique in a chordal supergraph of . Another definition is the following: where is the set of vertices of and the are the connected components of . This definition mirrors the definition of cycle rank of directed graphs, which uses strong connectivity and strongly connected components in place of undirected connectivity and connected components. Tree-depth may also be defined using a form of graph coloring. A centered coloring of a graph is a coloring of its vertices with the property that every connected induced subgraph has a color that appears exactly once. Then, the tree-depth is the minimum number of colors in a centered coloring of the given graph. If is a forest of height with the property that every edge of connects an ancestor and a descendant in , then a centered coloring of using colors may be obtained by coloring each vertex by its distance from the root of its tree in .