Niveau d'énergieUn niveau d'énergie est une quantité utilisée pour décrire les systèmes en mécanique quantique et par extension dans la physique en général, sachant que, s'il y a bien quantification de l'énergie, à un niveau d'énergie donné correspond un « état du système » donné ; à moins que le niveau d'énergie soit dit « dégénéré ». La notion de niveau d'énergie a été proposée en 1913 par le physicien danois Niels Bohr.
Rayonnement non ionisantthumb|upright=2|Gamme du rayonnement électromagnétique ; Le rayonnement non ionisant est la partie du spectre située sous le trait bleu, à gauche du graphique. Remarque : en réalité la zone de transition entre ces deux types de rayonnements (entre le trait bleu et le trait jaune) n'est pas une limite franche, car différentes molécules et atomes s'ionisent à des énergies différentes. thumb|Symbole d'avertissement des rayonnements non ionisants.
Rayonnement du corps noirvignette|303px|Au fur et à mesure que la température diminue, le sommet de la courbe de rayonnement du corps noir se déplace à des intensités plus faibles et des longueurs d'onde plus grandes. Le diagramme de rayonnement du corps noir est comparé avec le modèle classique de Rayleigh et Jeans. vignette|303px|La couleur (chromaticité) du rayonnement du corps noir dépend de la température du corps noir. Le lieu géométrique de telles couleurs, représenté ici en espace x,y CIE XYZ, est connu sous le nom de lieu géométrique de Planck.
Épitaxie par jet moléculaireL'épitaxie par jets moléculaires (ou MBE pour Molecular Beam Epitaxy) est une technique consistant à envoyer un ou plusieurs jets moléculaires vers un substrat préalablement choisi pour réaliser une croissance épitaxiale. Elle permet de faire croître des échantillons nanostructurés de plusieurs à une vitesse d'environ une monocouche atomique par seconde.
PiézoélectricitéLa piézoélectricité (du grec πιέζειν, piézein, presser, appuyer) est la propriété que possèdent certains matériaux de se polariser électriquement sous l’action d’une contrainte mécanique et réciproquement de se déformer lorsqu’on leur applique un champ électrique. Les deux effets sont indissociables. Le premier est appelé effet piézoélectrique direct ; le second effet piézoélectrique inverse. Cette propriété trouve un très grand nombre d’applications dans l’industrie et la vie quotidienne.