Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Méthode des surfaces de réponsesthumb|Expériences statistiques : à gauche, un plan factoriel et, à droite, la surface de réponses obtenue par MSR. En statistiques, la méthode des surfaces de réponses (MSR) a pour but d'explorer les relations entre les variables dépendantes et indépendantes impliquées dans une expérience. Elle est due aux travaux de 1951 de George Box et K. B. Wilson. L'idée principale de leur méthode est l'utilisation d'une séquence d'expériences. Box et Wilson suggèrent d'utiliser un modèle à polynôme de second degré, mais concèdent que ce modèle n'est qu'une approximation.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Sable bitumineuxUn sable bitumineux (ou bitumeux) est un mélange de bitume brut, qui est une forme semi-solide de pétrole brut, de sable, d'argile minérale et d'eau. En d’autres mots, c’est un sable enrobé d’une couche d’eau sur laquelle se dépose la pellicule de bitume. Plus la pellicule de bitume est épaisse, meilleurs sont les sables bitumineux en termes de quantité de pétrole extractible. Après extraction et transformation des sables bitumineux, on obtient le bitume, qui est un mélange d’hydrocarbures sous forme solide, ou liquide dense, épais et visqueux.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.