Euclidean minimum spanning treeA Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.
Graphe de PetersenLe graphe de Petersen est, en théorie des graphes, un graphe particulier possédant et . Il s'agit d'un petit graphe qui sert d'exemple et de contre-exemple pour plusieurs problèmes de la théorie des graphes. Il porte le nom du mathématicien Julius Petersen, qui l'introduisit en 1898 en tant que plus petit graphe cubique sans isthme dont les arêtes ne peuvent être colorées avec trois couleurs. Il a cependant été mentionné par Alfred Kempe pour la première fois auparavant, en 1886.
Structure d'incidencevignette| Exemples de structures d'incidence: Exemple 1: Points et droites du plan euclidien Exemple 2: Points et cercles Exemple 3: Structure définie par une matrice d'incidence. En mathématiques, une structure d'incidence est toute composition de deux types d'objets dans le plan euclidien : des points ou l'équivalent de points et des droites ou l'équivalent de droites et d'une seule relation possible entre ces types, les autres propriétés étant ignorées et la structure pouvant ainsi se représenter par une matrice.