This thesis is a contribution to the field of cellular communication in arteries during vasomotion, i.e. rhythmic and spontaneous diameter oscillations of arteries. Investigating how individual smooth muscle cells (SMCs) and endothelial cells (ECs) calcium variations interact to induce an arterial response is a key to understanding the physical mechanisms leading to contraction and vasomotion. This study is composed of two main experimental parts using rat mesenteric arteries: a study on recruitment and synchronization of SMCs and an analysis on SMCs-ECs communication in arterial strips. The introduction is an overview of the mechanism leading to arterial vasomotion. We focused on the calcium signaling between SMCs, between ECs and between SMCs and ECs. In the chapter "Material and methods", we present the different experimental techniques we developed or improved in order to study calcium signaling in SMCs and/or ECs. For this purpose, we used arterial strips or cannulated arteries using a confocal microscope or a conventional microscope. Calcium concentration were measured using fluorescent dyes. These methods allow the correlation of calcium oscillations of individual SMCs, of individual ECs or both, together with mean calcium variations and arterial contraction. In chapter 3, we investigated the behavior of individual SMCs in order to determine if all cells presented the same variations of calcium concentration as the mean calcium variations or if vasomotion results of an unequal contribution of each SMC. Arterial strips were stimulated by increasing concentration of vasoconstrictors phenylephrine (PE) or potassium chloride (KCl). We revealed that the number of SMCs presenting calcium variations and their synchronization depend on vasoconstrictor concentration. At low vasoconstrictor concentration, few cells present asynchronous calcium variations and no local contraction is detected. Recruitment of cells is complete and synchronous at medium concentration, leading to strip contraction after KCl stimulation and to vasomotion after PE stimulation. High concentration of PE leads to synchronous oscillations and a fully contracted arterial strip, whereas high concentration of KCl leads to a sustained non-oscillating increase of calcium and to fully contracted vessels. We conclude that the number of simultaneously recruited cells is an important factor in controlling artery contraction and vasomotion. In chapter 4, we investigated the three main possible ways to synchronize the recruitment of SMCs when stimulating with PE and KCl. We tested the importance of calcium voltage-gated channels (VOCs) and thus the electrical communication, by using different inhibitors of the VOCs. We also tested the importance of stretch-activated channels (SACs) by inhibiting contraction of individual SMCs. Finally, we verified the importance of gap junctions and thus of chemical and/or electrical coupling. We applied a gap junction inhibitor and we also performed mic
Kai Johnsson, Julien Hiblot, Ling Hai