Résumé
Calcium ions (Ca2+) contribute to the physiology and biochemistry of organisms' cells. They play an important role in signal transduction pathways, where they act as a second messenger, in neurotransmitter release from neurons, in contraction of all muscle cell types, and in fertilization. Many enzymes require calcium ions as a cofactor, including several of the coagulation factors. Extracellular calcium is also important for maintaining the potential difference across excitable cell membranes, as well as proper bone formation. Plasma calcium levels in mammals are tightly regulated, with bone acting as the major mineral storage site. Calcium ions, Ca2+, are released from bone into the bloodstream under controlled conditions. Calcium is transported through the bloodstream as dissolved ions or bound to proteins such as serum albumin. Parathyroid hormone secreted by the parathyroid gland regulates the resorption of Ca2+ from bone, reabsorption in the kidney back into circulation, and increases in the activation of vitamin D3 to calcitriol. Calcitriol, the active form of vitamin D3, promotes absorption of calcium from the intestines and bones. Calcitonin secreted from the parafollicular cells of the thyroid gland also affects calcium levels by opposing parathyroid hormone; however, its physiological significance in humans is dubious. Intracellular calcium is stored in organelles which repetitively release and then reaccumulate Ca2+ ions in response to specific cellular events: storage sites include mitochondria and the endoplasmic reticulum. Characteristic concentrations of calcium in model organisms are: in E. coli 3mM (bound), 100nM (free), in budding yeast 2mM (bound), in mammalian cell 10-100nM (free) and in blood plasma 2mM. In 2020, calcium was the 204th most commonly prescribed medication in the United States, with more than 2 million prescriptions. The U.S. Institute of Medicine (IOM) established Recommended Dietary Allowances (RDAs) for calcium in 1997 and updated those values in 2011. See table.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.