Robots outside of the fenced factories have to deal with continuously changing environment, this requires fast and flexible modes of control. Planning methods or complex learning models can find optimal paths in complex surroundings, but they are computati ...
This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...
Modular robotics link the reliability of a centralised system with the adaptivity of a decentralised system.
It is difficult for a robot with a fixed shape to be able to perform many different types of tasks.
As the task space grows, the number of functi ...
We introduce an algorithm to reconstruct a mesh from discrete samples of a shape's Signed Distance Function (SDF). A simple geometric reinterpretation of the SDF lets us formulate the problem through a point cloud, from which a surface can be extracted wit ...
Planning multicontact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing traj ...
The rise of robotic body augmentation brings forth new developments that will transform robotics, human-machine interaction, and wearable electronics. Extra robotic limbs, although building upon restorative technologies, bring their own set of challenges i ...
Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace ...
In various robotics applications, the selection of function approximation methods greatly influences the feasibility and computational efficiency of algorithms. Tensor Networks (TNs), also referred to as tensor decomposition techniques, present a versatile ...
Social insects, such as ants, termites, and honeybees, have evolved sophisticated societies where the collaborative efforts of "simple" individuals can lead to the emergence of complex dynamics. The reliance of each organism on the collective is so great t ...
In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an ...