This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane due to a short range wake field and following a travelling wave of about 700 MHz. In order to perform measurements, a dedicated single bunch beam was set up with a zero chromaticity plateau around transition energy. Extensive measurements were performed of the dynamics of instability in order to compute rise times and intensity thresholds. These measurements were done for several peak densities and the results show that the longer the bunch length, the higher is the threshold in intensity. Other measurements performed with a small negative chromaticity and another working point show that the intensity threshold can be pushed at higher values—in this case, the threshold was increased by 20%. The particularity of this work is that the instability is triggered during the acceleration. At transition energy, the momentum compaction factor is zero and the exchange of particles between the head and the tail of the beam from synchrotron motion, which is a natural way to damp instabilities, vanishes for few turns. Therefore the measurements at which η the instability is triggered are fundamental to know in which longitudinal regime the instability develops. Macro particle simulations were performed in order reproduce the dynamics of the instability with the HEADTAIL code, that simulates the beam interaction with the impedance of the machine. In the case of the PS, a very detailed impedance model does not exist, therefore a very simple resonator impedance was considered. The parameters of the code were adapted in order to simulate the beam as close as possible to the experimental conditions. The simulations showed that the travelling wave is well reproduced and therefore rise times were extracted for different beam intensities and compared to the measurements. A good agreement is found for a such simple impedance model. The intensity thresholds are reproduced for zero chromaticity within 30% and it is clear that some damping mechanisms occurring in the m
Tatiana Pieloni, Nicolas Frank Mounet, Christophe Emmanuel R. Lannoy
Tatiana Pieloni, Giovanni Iadarola, Milica Rakic, Bruce Roderik, Guillaume Clément Broggi, Félix Simon Carlier