En optique, un faisceau gaussien est une solution particulière de l'équation de propagation de Helmholtz (au même titre qu'une onde plane) dans le cadre de l'approximation paraxiale. Ce modèle produit une meilleure description de rayonnements cohérents comme les faisceaux lasers bien qu'il soit incomplet dans le traitement de la diffraction. Plus spécifiquement, un faisceau gaussien est un faisceau dont l'évolution du profil transversal d'amplitude en fonction de la propagation spatiale est proportionnel à une fonction gaussienne, par exemple une fonction de Gauss-Hermite. Il existe plusieurs façons de définir un faisceau gaussien. Historiquement, les faisceaux gaussiens ont été utilisés en optique comme une solution de l'équation de propagation dans le cadre de l'approximation paraxiale. L'approximation paraxiale suppose une faible divergence du faisceau par rapport à son axe de propagation. L'angle de divergence maximal généralement admis est de l'ordre de 20 degrés. D'autres approches provenant de l'électromagnétisme permettent d'obtenir une formulation de faisceaux gaussiens. Ainsi, on peut définir les faisceaux gaussiens monomodes et multimodes comme étant un cas particulier dans l'approximation paraxiale d'un ou plusieurs points source complexe. Une autre solution peut consister à étendre le formalisme des rayons de l'optique géométrique aux rayons complexes, c'est-à-dire à des rayons dont la position, la direction et la matrice de courbure peuvent être complexes. Enfin, on peut également définir un faisceau gaussien à partir de sa représentation spectrale. En définissant un champ dont l'amplitude est gaussienne sur un plan, on peut exprimer en utilisant un spectre d'ondes planes de cette distribution d'amplitude le champ propagé en un point quelconque. L'approximation faite ici est celle du faisceau gaussien scalaire où le champ électrique est considéré linéairement polarisé selon une direction orthogonale à sa direction de propagation. Cette approximation donne de bons résultats lorsque le rayon de gorge du faisceau est très supérieur à la longueur d'onde.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (26)
PHYS-317: Optics I
L'optique est un vieux domaine qui touche à beaucoup de sujets modernes, des techniques expérimentales aux applications courantes. Ce premier cours traite plusieurs aspects de base de l'optique: propa
MICRO-605: Optical MEMS and micro-optics
Micro-optics and optical MEMS encompass a wide range of methods, devices and systems that enable precise, high-speed manipulation of light at the wavelength scale. MICRO605 provides a comprehensive i
MICRO-426: Laser fundamentals and applications for engineers
The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected
Afficher plus
Publications associées (293)
Concepts associés (16)
Pouvoir de résolution
Le pouvoir de résolution, ou pouvoir de séparation, pouvoir séparateur, résolution spatiale, résolution angulaire, exprime la capacité d'un système optique de mesure ou d'observation – les microscopes, les télescopes ou l'œil, mais aussi certains détecteurs, particulièrement ceux utilisés en – à distinguer les détails. Il peut être caractérisé par l'angle ou la distance minimal(e) qui doit séparer deux points contigus pour qu'ils soient correctement discernés.
Diffraction-limited system
In optics, any optical instrument or system a microscope, telescope, or camera has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.
Ouverture numérique
L’ouverture numérique est une caractéristique d'un système optique, généralement notée O.N. (ou NA dans la littérature anglophone, pour Numerical Aperture). Elle est définie par , où n0 est l'indice de réfraction dans le milieu d'observation, et i0 est l'angle entre l'axe optique et le rayon le plus écarté de l'axe optique qui entre dans la lentille. Cet angle est appelé demi-angle d'ouverture.
Afficher plus
MOOCs associés (2)
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.