Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la tâche d'analyse des données du NABEL, en mettant l'accent sur les compétences en analyse des données et le formatage des rapports pour les concentrations de pollution atmosphérique et la météorologie.
Explore la détection de la qualité de l'air à haute résolution dans les zones urbaines grâce au projet OpenSense II, qui couvre les impacts, la vision du système, les déploiements, les ensembles de données et les corrélations avec les données sur la santé.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Couvre la corrélation et les corrélations croisées dans l'analyse des données sur la pollution atmosphérique, y compris les séries chronologiques, les autocorrelations, l'analyse de Fourier et le spectre de puissance.
Couvre les méthodes d'identification et de traitement des valeurs extrêmes dans les données, y compris les procédures statistiques de détection aberrante.
Explore l'analyse de l'exposition humaine, y compris les modèles, les méthodes d'évaluation et les modèles liés à la qualité de l'air intérieur et à la ventilation.