Christophe MoserChristophe Moser is Associate Professor of Optics and the Section Director in the Microengineering department at EPFL. He obtained his PhD at the California Institute of Technology in optical information processing in 2000. He co-founded and was the CEO of Ondax Inc (acquired by Coherent Inc.), Monrovia California for 10 years before joining EPFL in 2010. His current interests are ultra-compact endoscopic optical imaging through multimode fibers, multimode fiber lasers, retinal imaging and additive manufacturing via volumetric 3D printing with light. He is the co-founder of Composyt light lab in the field of head worn displays in 2014 (acquired by Intel Corp), Earlysight SA and Readily3D. He is the author and co-author of 75 peer reviewed publications and 45 patents.
Hilal Lashuel2012-2013 Visiting Professor, Standford University. Stanford School of Medicine
2011- Associate Professor of Life Sciences-Brain Mind Institute-EPFL
Dir. Laboratory of Chemical Biology of Neurodegeneration
2005-2011 Assistant Professor of Life Sciences-Brain Mind Institute-EPFL
Dir. Laboratory of Molecular Neurobiology and Neuroproteomics
2005-2008 Director- EPFL Proteomic Core Facility
2002-2004 Instructor of Neurology- Harvard Medical School and Brigham and Women's
Hospital
2001-2002 Sabbatical Fellow- Laboratory for Drug Discovery in Neurodegeneration
Harvard Medical School,
2001-2002 Post-doctoral Fellow- Center for Neurologic Diseases
Harvard Medical School and Brigham and Women's Hospital
Advisor- Prof. Peter T. Lansbury
2000-2001 Research Scientist, The Picower Institute for Medical Research, Great Neck
New York
1994-2000 PhD Student; Texas A&M University and the Scripps Research Institute
Advisor- Prof. Jeffery W. Kelly
1990-1994 B.S. City University of New York, Brooklyn College
Dr. Hilal A. Lashuel received his B.Sc. degree in chemistry from the City University of New York in 1994 and completed his doctoral studies at Texas A&M University and the Scripps Research Institute in 2000. After obtaining his doctoral degree, he became a research fellow at the Picower Institute for Medical Research in Long Island New York. In 2001, he moved to Harvard Medical School and the Brigham and Women's Hospital as a research fellow in the Center for Neurologic Diseases and was later promoted to an instructor in neurology at Harvard Medical School. During his tenure (2001-2004) at Harvard Medical School his work focused on understanding the mechanisms of protein misfolding and fibrillogenesis and the role of these processes in the pathogenesis of Parkinson's and Alzheimer's disease. In 2005 Dr. Lashuel moved Switzerland to join the Brain Mind Institute at the Swiss Federal Institute of Technology Lausanne as a tenure-track assistant professor in neurosciences. Currently, Dr. Lashuel is an associate professor of life sciences and the director of the laboratory of molecular and chemical biology of neurodegeneration. (http://lashuel-lab.epfl.ch/).
Research efforts in the Lashuels laboratory focus on understanding the molecular mechanisms of neurodegeneration and developing novel strategies to diagnose and treat neurodegenerative diseases such as Alzheimers and Parkinsons disease. Research in the Lashuel lab is funded by several international funding agencies and foundations, including the Swiss National Science Foundation, European FP7 program (Marie Curie and ERC grants), Human Science Frontiers, Strauss Foundation, Cure the Huntingtons disease foundation and Michael J Fox foundation and is supported by collaborations with pharmaceutical and biotech companies (http://lashuel-lab.epfl.ch/page-50538-en.html), Nestle, Merck-Serono, AC Immune and Johnson and Johnson.
Dr. Lashuels research has resulted in the characterization of novel quaternary structure intermediates on the amyloid pathway, identification of potential therapeutic targets, and new hypotheses concerning the mechanisms of pathogenesis in Alzheimers disease, Parkinsons disease and related disorders. Dr. Lashuel scientific contribution to this field includes i) more than100 publications in major peer reviewed journals including Nature journals, Cell, PNAS, JBC, J. Neuroscience JACS, and Angewandtie Chemie; ii) three patents on novel strategies for preventing protein aggregation and treating autoimmune and inflammatory diseases; iii) more than 150 invited lectures since 2002 and more than 5500 citations (7800 citation-Google Scholar) since 1996. Dr. Lashuel has received several pre-doctoral and post-doctoral awards and fellowships and was the recipient of two prestigious awards given to young investigators; Human Science Frontiers young investigator research award and the European Research Council (ERC) starting independent researcher grant and the ERC proof of concept award (2013) These awards provide more than $2.5 Million to Dr. Lashuel to translate some of his ideas and projects into novel strategies for diagnosing and treating neurodegenerative diseases such as Alzheimers and Parkinsons disease. Dr. Lashuel has chaired and co-organized several international conferences and serves as an academic editor for PLoS ONE, an associate editor for frontiers of molecular neuroscience, member of the Editorial advisory board of ChemBioChem and ad hoc reviewer for several international scientific journals and funding agencies. Paul Joseph DysonPaul Dyson rejoignit l’EPFL en 2002 à la tête du Laboratoire de chimie organométallique et médicinale de l’Institut des sciences et ingénierie chimiques, dont il en assuma ensuite la direction entre 2008 et 2016.
Le prof. Dyson a été récompensé par de nombreux prix dont le Prix Werner de la Société Suisse de Chimie en 2004, le Prix pour les réalisations exceptionnelles en chimie bio organométallique en 2010, la Médaille du Centenaire de la naissance de Luigi Sacconi (2011) de la Société Italienne de Chimie, le Prix de Chimie bio-inorganique de la Royal Society of Chemistry en 2015, le Prix européen pour une chimie durable de la Société Européenne de Chimie en 2018 et le Prix pour la chimie verte de la Royal Society of Chemistry en 2020.
Le prof. Dyson est également mentionné dans la liste établie par Clarivate des chercheurs les plus cités (Clarivate Highly Cited Researcher), avec un H-index >110 (Web of Science et Google Scholar). Paul Dyson a été élu membre de la Royal Société de Chimie en 2010, membre de l’Académie Européenne des Sciences en 2019 et membre à vie de l’Association Américaine pour l’Avancement de la Science en 2020. Au cours des dernières années il s’est vu décerner le titre de Professeurs Hôte par l’Université de Bourgogne, l’Université de Pierre et Marie Curie, l’Université de Vienne, l’Université de Rome Tor Vergara, l'Ecole Nationale Supérieure de chimie de Paris (Chimie ParisTech) et par l’Université de Shangai Jiao Tong.
De 2016 à 2021 il était membre du conseil de la recherche de la division de mathématique, sciences naturelles et de l’ingénieur du Fonds National Suisse. En 2021, il a été nommé doyen de la Faculté des Sciences de Base.
Françoise Gisou van der Goot GrunbergGisou van der Goot est responsable du Laboratoire de Biologie Cellulaire et Membranaire et co-fondatrice de l'Institut dInfectiologie, à la Faculté des Sciences de la Vie de l'EPFL.Depuis 2021, Prof. van der Goot est Vice-présidente pour la transformation responsable, moteur du changement de l’EPFL vers une culture inclusive et un campus durable. De 2014 à 2020, Prof. van der Goot a occupé la fonction de Doyenne de cette même Faculté.Avant sa nomination à l'EPFL, en 2006, elle était Cheffe de Groupe à la Faculté des Sciences de lUniversité de Genève (UNIGE), puis Professeure Associée à la Faculté de Médecine. Prof. van der Goot a d'abord obtenu un diplôme dIngénieur de l'Ecole Centrale de Paris avant dentamer une thèse en Biophysique Moléculaire au CEA de Saclay (Université de Paris VI), suivie dun séjour postdoctoral au Laboratoire Européen de Biologie Moléculaire (EMBL) à Heidelberg (Allemagne). Différentes distinctions lui ont été décernées, dont, en 2001, le Prix Young Investigator de l'EMBO (Organisation européenne de Biologie Moléculaire), puis, en 2005, le soutien par le programme international du Howard Hughes Medical Institute (HHMI, Etats-Unis); en 2009, elle a été la première femme à obtenir le Prix Marcel Benoist. La même année, elle est élue membre de lEMBO. Les domaines dexpertise du Prof. van der Goot incluent les mécanismes moléculaires et cellulaires des toxines bactériennes, l'organisation des membranes (des mammifères) et la biologie des organelles. Prof. van der Goot est membre du conseil scientifique de diverses organisations telles que le Fonds National Suisse de la Recherche Scientifique (SNF), le Conseil Suisse de la Science et de la Technologie (CSST) et le Conseil Européen de la Recherche (ERC).
Arne Seitz04/1996-06/2000 Scientific co-worker at Philipps-University of Marburg, Dep. of Physical Chemistry
07/2000-10/2002 Post Doc at Max-Planck Unit for Structural Molecular Biology in Hamburg
11/2002-11/2005 Post Doc at European Molecular Biolohy Laboratory (EMBL), Cell Biology and Cell Biophysics Programme
11/2005-03/2009 Staff Scientist at Advanced Light Microscopy Facility, EMBL
04/2009- Head of Bioimaging and Optics platforme (BIOP), Ecole Polytechnique Fédérale de Lausanne (EPFL)
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Johan AuwerxJohan Auwerx is Professor at the École Polytechnique Fédérale in Lausanne, Switzerland, where he occupies the Nestle Chair in Energy Metabolism. Dr. Auwerx has been using molecular physiology and systems genetics to understand metabolism in health, aging and disease. Much of his work focused on understanding how diet, exercise and hormones control metabolism through changing the expression of genes by altering the activity of transcription factors and their associated cofactors. His work was instrumental for the development of agonists of nuclear receptors - a particular class of transcription factors - into drugs, which now are used to treat high blood lipid levels, fatty liver, and type 2 diabetes. Dr. Auwerx was amongst the first to recognize that transcriptional cofactors, which fine-tune the activity of transcription factors, act as energy sensors/effectors that influence metabolic homeostasis. His research validated these cofactors as novel targets to treat metabolic diseases, and spurred the clinical use of natural compounds, such as resveratrol, as modulators of these cofactor pathways.
Johan Auwerx was elected as a member of EMBO in 2003 and is the recipient of a dozen of international scientific prizes, including the Danone International Nutrition Award, the Oskar Minkowski Prize, and the Morgagni Gold Medal. His work is highly cited by his peers with a h-factor of over 100. He is an editorial board member of several journals, including Cell Metabolism, Molecular Systems Biology, The EMBO Journal, Journal of Cell Biology, Cell, and Science. Dr. Auwerx co-founded a handful of biotech companies, including Carex, PhytoDia, and most recently Mitobridge, and has served on several scientific advisory boards.
Dr. Auwerx received both his MD and PhD in Molecular Endocrinology at the Katholieke Universiteit in Leuven, Belgium. He was a post-doctoral research fellow in the Departments of Medicine and Genetics of the University of Washington in Seattle.