Calcul scientifique et quantification de l'incertitude - Chaire CADMOS
Laboratoire
Publications associées (798)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Porto renaît, elle se reconstruit. Aujourd’hui, après des années d’oubli et d'abandon, la ville s’extrait brutalement de sa torpeur. Ce changement radical, porté par un tourisme grandissant, favorise la spéculation immobilière: les bâtiments abandonnés et ...
We consider finite element error approximations of the steady incompressible Navier-Stokes equations defined on a randomly perturbed domain, the perturbation being small. Introducing a random mapping, these equations are transformed into PDEs on a fixed re ...
The vast majority of problems that arise in aircraft production and operation require decisions to be made in the presence of uncertainty. An effective and accurate quantification and control of the level of uncertainty introduced in the design phase and d ...
We analyze the accuracy of the discrete least-squares approximation of a function u in multivariate polynomial spaces PΛ:=span{y↦yν:ν∈Λ} with Λ⊂N0d over the domain Γ:=[−1,1]d, based on the s ...
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamica ...
In this work, we focus on the Dynamical Low Rank (DLR) approximation of PDEs equations with random parameters. This can be interpreted as a reduced basis method, where the approximate solution is expanded in separable form over a set of few deterministic b ...
In this work, we consider an elliptic partial differential equation with a random coefficient solved with the stochastic collocation finite element method. The random diffusion coefficient is assumed to depend in an affine way on independent random variabl ...
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi ...
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi ...