Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The Notch signaling pathway is a key regulator of cell fate decisions in embryonic development and in adult tissue homeostasis. Mounting evidence suggests that Notch signaling is frequently deregulated in human neoplasms, where depending upon the cellular ...
The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we pr ...
Transposable elements (TEs) account for at least 50% of the human genome. They constitute essential motors of evolution through their ability to modify genomic architecture, mutate genes and regulate gene expression. Accordingly, TEs are subject to tight e ...
The Notch signalling pathway is an ancient cell signalling mechanism that enables short-range communications between cells and controls a broad spectrum of cell fates and developmental processes. In the haematopoietic system Notch signalling has been linke ...
How signaling gradients supply positional information in a field of moving cells is an unsolved question in patterning and morphogenesis. Here, we ask how a Wnt signaling gradient regulates the dynamics of a wavefront of cellular change in a flow of cells ...
The segmentation clock is an oscillating genetic network thought to govern the rhythmic and sequential subdivision of the elongating body axis of the vertebrate embryo into somites: the precursors of the segmented vertebral column. Understanding how the rh ...
Segmentation is a periodic and sequential morphogenetic process in vertebrates. This rhythmic formation of blocks of tissue called somites along the body axis is evidence of a genetic oscillator patterning the developing embryo. In zebrafish, the intracell ...
Imaging rapidly changing gene expression during embryogenesis is a challenge for the development of probes and imaging techniques. The vertebrate Segmentation Clock is a genetic network that controls the subdivision of the elongating embryonic body axis in ...
An important step in understanding biological rhythms is the control of period. A multicellular, rhythmic patterning system termed the segmentation clock is thought to govern the sequential production of the vertebrate embryo's body segments, the somites. ...
Hox genes are major determinants of the animal body plan, where they organize structures along both the trunk and appendicular axes. During mouse limb development, Hoxd genes are transcribed in two waves: early on, when the arm and forearm are specified, a ...