Lecture

Continuous-Time Markov Chains: Asymptotic Behavior

In course
DEMO: consequat proident
Proident nisi Lorem adipisicing in ad ea. Fugiat excepteur exercitation minim amet ullamco. Laborum ea mollit sunt consequat duis. Veniam elit ipsum cupidatat dolore aute incididunt esse nulla enim minim cillum. Id sit nisi enim eu qui excepteur eu esse officia esse adipisicing velit proident ipsum. Quis esse duis incididunt et aliqua non aliquip labore labore pariatur aliquip.
Login to see this section
Description

This lecture covers the behavior of continuous-time Markov chains, focusing on the asymptotic properties such as irreducibility, positive recurrence, and convergence to a stationary distribution. The lecture also discusses the limiting behavior of the chain over time and the conditions for convergence. Topics include the asymptotic behavior of the chain, convergence to a stationary distribution, and the properties of irreducibility and positive recurrence.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructor
anim irure
Consequat ea reprehenderit in commodo elit enim nostrud esse sint ad nostrud. Nostrud proident sint ex minim sint proident esse non nostrud mollit. Est duis consectetur commodo eiusmod consequat dolore. Nostrud proident nostrud nisi deserunt non irure. Cillum anim nostrud duis nisi irure adipisicing. Enim voluptate amet qui culpa ex ut laborum id ipsum in sint magna duis tempor.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.