Catégorie

Inférence bayésienne

Résumé
vignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements. On attribue à toute proposition de cause une valeur de sa probabilité, prise dans l'intervalle ouvert allant de 0 (contradiction, faux à coup sûr) à 1 (tautologie, vraie à coup sûr). Quand un événement possède plus de deux causes possibles, on considère une distribution de probabilité pour ces causes. Cette distribution est révisée à chaque nouvelle observation et s'affine de plus en plus. Ainsi, un diagnostic médical indique-t-il qu'une maladie plus qu'une autre est probablement à l'origine des symptômes d'un patient, et des examens renforcent ou infirment cette hypothèse. On révise de même, au vu des résultats de chaque sondage d'une campagne de prospection, la probabilité qu'il existe un gisement de pétrole à un certain endroit. Le théorème de Cox-Jaynes formalise la notion intuitive de plausibilité sous une forme numérique. Il démontre que, si les plausibilités satisfont à l'ensemble d'hypothèses qu'il propose, la seule façon cohérente de les manipuler est d'utiliser un système isomorphe à la théorie des probabilités, induisant alors une interprétation « logique » des probabilités indépendante de celle de fréquence et une base rationnelle au mécanisme d'induction logique. L'inférence bayésienne produit une probabilité qui s'interprète comme le degré de confiance à accorder à une cause hypothétique. On l'utilise pour l'apprentissage automatique en intelligence artificielle. L'inférence bayésienne effectue des calculs sur les énoncés probabilistes. Ces énoncés doivent être clairs et concis afin d'éviter toute confusion. L'inférence bayésienne est particulièrement utile dans les problèmes d'induction.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.