Lecture

Linear Algebra: Applications and Algorithms

Description

This lecture covers various applications of linear algebra, such as image processing, signal processing, and Google's search algorithm. It also delves into algorithms like Gaussian elimination, LU decomposition, and Gram-Schmidt process.

In MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 3)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more
Instructor
dolore elit non
Ad nostrud magna excepteur labore elit sunt ea. Ad deserunt sunt commodo nulla aliqua sunt in exercitation minim labore aute cillum elit. Enim qui magna dolore non dolor. Quis est elit laboris ad exercitation eu magna ea ex in nulla ea adipisicing dolore. Cillum fugiat et ipsum occaecat velit qui.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (30)
Singular Value Decomposition: Applications and Interpretation
Explains the construction of U, verification of results, and interpretation of SVD in matrix decomposition.
Cholesky Factorization: Theory and Algorithm
Explores the Cholesky factorization method for symmetric positive definite matrices.
SVD: Singular Value Decomposition
Covers the concept of Singular Value Decomposition (SVD) for compressing information in matrices and images.
Singular Value Decomposition: Applications and Theorems
Explores the applications and theorems of Singular Value Decomposition in linear algebra, including image processing, matrix rotation, and transition probabilities.
Decomposition Spectral: Symmetric Matrices
Covers the decomposition of symmetric matrices into eigenvalues and eigenvectors.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.