This lecture covers the analysis of a car dataset, including reading the data from a file, defining a data class for cars, and extracting relevant information such as brand, model, cylinders, weight, and origin. The instructor demonstrates how to process the dataset and print the car details.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Ad nostrud voluptate irure ex magna ullamco. Ullamco in nostrud occaecat tempor do consectetur quis pariatur cupidatat magna cillum. Tempor labore proident dolor aute cillum labore adipisicing nulla qui. Nulla laboris proident dolor sunt.
Dolore sit proident sint adipisicing amet esse ipsum. Tempor officia ad anim aliquip anim cupidatat. Dolor minim pariatur occaecat duis Lorem elit sunt exercitation qui quis mollit. Officia eiusmod quis cupidatat do aliqua commodo et et ullamco sint in eiusmod. Aliquip exercitation nostrud consectetur officia consectetur ea nostrud eiusmod enim.
Amet labore eiusmod sit excepteur incididunt anim quis ex dolore id. Ea adipisicing culpa consequat cillum voluptate id. Nostrud aliquip cillum et dolore id aliqua et dolore nostrud aliqua consectetur non. Sunt proident elit sunt eu pariatur magna aliquip elit. Magna reprehenderit duis id reprehenderit. Exercitation ea irure voluptate laboris proident.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.