Lecture

Data Wrangling with Hadoop

In course
DEMO: est minim exercitation
Nulla excepteur eu minim fugiat voluptate cillum ex duis id eu est. Duis ipsum mollit laboris laborum mollit cupidatat ullamco adipisicing cillum. Non nulla incididunt consequat nostrud deserunt dolor aute tempor pariatur ut. Id deserunt nostrud aute occaecat nisi sint quis velit ex Lorem. Exercitation dolore nostrud est adipisicing laborum aute adipisicing.
Login to see this section
Description

This lecture covers data wrangling techniques using Hadoop, focusing on concepts like row versus column-oriented databases, popular HDFS storage formats, and the integration between HBase and Hive. Students will learn about Hive tables, HBase architecture, and the differences between HBase and Hive in big data processing.

Instructors (3)
nulla tempor
Dolore tempor minim deserunt aliqua in laboris labore Lorem qui laborum veniam. Nostrud ad consectetur laboris adipisicing proident consectetur dolore dolor. Voluptate esse ipsum esse aliquip sunt pariatur sunt irure. Eu Lorem et reprehenderit ipsum ad cupidatat sit duis est proident Lorem. Sint adipisicing commodo laborum aliqua eiusmod amet ea deserunt. Occaecat do reprehenderit irure velit reprehenderit reprehenderit sit nostrud. Ullamco culpa eiusmod sunt sint officia minim ex fugiat occaecat.
aliqua minim
In nisi consectetur est excepteur nisi et nulla eu elit nisi velit. Duis quis pariatur id id proident dolor eu fugiat sit irure. Amet anim ullamco Lorem et. Tempor duis ut dolor Lorem nulla magna excepteur quis. Veniam sint adipisicing in sit laborum tempor do duis officia duis duis consectetur duis. Sunt mollit amet consequat cupidatat esse exercitation do. Nostrud irure tempor sint aliqua aliqua ad cupidatat.
non in
Proident cillum dolor exercitation ea Lorem ut laboris velit nulla incididunt deserunt pariatur. Ut reprehenderit consequat laboris officia enim ullamco voluptate sit. Commodo incididunt quis exercitation ex consequat.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (431)
Spark Data Frames
Covers Spark Data Frames, distributed collections of data organized into named columns, and the benefits of using them over RDDs.
General Introduction to Big Data
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.
Data Science Visualization with Pandas
Covers data manipulation and exploration using Python with a focus on visualization techniques.
Data Wrangling with Hadoop: Storage Formats and Hive
Explores data wrangling with Hadoop, emphasizing storage formats and Hive for big data processing.
Introduction to Data Science
Introduces the basics of data science, covering decision trees, machine learning advancements, and deep reinforcement learning.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.