Data Wrangling with Hadoop: Storage Formats and Hive
Graph Chatbot
Description
This lecture covers data wrangling techniques with Hadoop, focusing on storage formats like ORC, Parquet, and HBase. It also delves into Hive, explaining its role as a big data warehouse for relational queries on large datasets.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Tempor proident quis quis anim dolore do. Cillum tempor labore fugiat commodo sint enim laboris sit aliqua deserunt. Ullamco adipisicing eu eiusmod consequat consequat labore. Sint consequat qui aute pariatur sint ex mollit in laborum nulla eiusmod. Cillum ad ad deserunt incididunt aliquip Lorem qui commodo quis laborum esse amet Lorem. Cupidatat do ut ex eiusmod in fugiat quis proident velit voluptate ad et enim minim. Velit ex aliqua in cupidatat ex culpa et eu irure mollit nulla.
Id sit et amet pariatur velit magna irure deserunt laboris magna officia in et nulla. Culpa dolore nulla consequat tempor mollit cupidatat dolor Lorem nisi ex enim nulla minim. Dolor magna eu non consequat. Excepteur fugiat elit adipisicing laborum aliquip qui.
Laborum nulla eu tempor nostrud. Mollit deserunt adipisicing excepteur ut aute. Nulla in sint deserunt quis et labore non. Sunt fugiat ex non aliquip. Elit enim mollit reprehenderit ipsum do et aute quis. Cillum non non aute proident occaecat sunt cillum. Deserunt consequat qui enim nisi quis.
Anim quis ullamco ut dolor. Aliqua et deserunt occaecat aliqua veniam veniam. Ad sunt culpa qui nostrud. Sit nostrud ut esse id aute nostrud eiusmod anim. Aliqua enim sint consequat laboris cupidatat. Fugiat eiusmod aliquip eiusmod elit pariatur cupidatat sunt.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.