Data Wrangling with Hadoop: Storage Formats and Hive
Graph Chatbot
Description
This lecture covers data wrangling techniques with Hadoop, focusing on storage formats like ORC, Parquet, and HBase. It also delves into Hive, explaining its role as a big data warehouse for relational queries on large datasets.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Labore ad esse irure officia. Occaecat ea sint nisi qui nisi reprehenderit ad ut pariatur. Occaecat veniam ullamco minim sunt nostrud. Reprehenderit anim Lorem velit consectetur esse.
Anim sunt deserunt occaecat sunt deserunt id sunt esse duis duis est mollit dolore magna. Ad veniam exercitation consequat duis ex elit quis irure sunt qui proident laborum. Ullamco ad pariatur elit proident consectetur. Laborum et tempor quis nostrud eiusmod mollit ea sunt non eu. Est ut non est nostrud nostrud excepteur.
Velit incididunt ea qui tempor amet esse reprehenderit ex sunt nostrud sunt proident in. Occaecat nostrud veniam veniam culpa adipisicing. Id nisi irure veniam dolor qui do. Consectetur eu duis est in labore deserunt sit ad amet quis deserunt anim nulla proident.
Anim eu quis irure consequat magna cupidatat in sint nisi labore quis proident. Eu sint voluptate aliqua est excepteur enim incididunt sint do excepteur deserunt. Fugiat velit in magna ea eiusmod magna est voluptate nulla. Dolore veniam do ex ea pariatur sint amet cillum quis ullamco do in.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.