Lecture

Numerical Simulation of SDEs: Monte Carlo & Optimal Control

In course
DEMO: dolor enim cupidatat ullamco
Ex excepteur aliquip fugiat aliquip magna velit eu labore magna irure sunt duis incididunt reprehenderit. Culpa ex do labore et qui eu. Ut amet sint ullamco cupidatat sunt ad enim. Quis sunt consequat dolore laborum culpa nostrud et. Enim id laboris et consequat eu.
Login to see this section
Description

This lecture covers the principles of Monte Carlo methods for estimating expectations, variance reduction techniques, and stochastic optimal control. It delves into the theoretical foundations, confidence intervals, mean square error, efficiency of simulation estimators, optimal allocation of computing time, and numerical results. The lecture also explores the Black-Scholes stock model, different simulation schemes, control variates, importance sampling, and the efficiency of importance sampling. Additionally, it discusses the stochastic optimal control problem, the Hamilton-Jacobi-Bellman equation, investment and consumption dynamics, and the optimal allocation of investments and consumption. The lecture concludes with the derivation of the Hamilton-Jacobi-Bellman equation and the verification theorem.

Instructor
ut laboris
Deserunt dolore excepteur nostrud ipsum laborum elit excepteur quis labore anim reprehenderit velit proident. Qui consequat ut anim nostrud ut magna qui mollit. Voluptate quis ex minim qui et eu velit cupidatat sint deserunt Lorem tempor. Amet aliquip irure labore exercitation occaecat proident anim occaecat nisi. Dolore ex in magna nulla dolore tempor proident officia et non. Do aliquip magna reprehenderit veniam elit consectetur fugiat ut commodo voluptate.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (41)
Estimators and Confidence Intervals
Explores bias, variance, unbiased estimators, and confidence intervals in statistical estimation.
Estimation and Confidence Intervals
Explores bias, variance, and confidence intervals in parameter estimation using examples and distributions.
Probabilistic Estimation in Spin Glass Card Game
Explores probabilistic estimation in the Spin Glass Card game, emphasizing room splitting based on a given parameter.
Mixture Models: Simulation-based Estimation
Explores mixture models, including discrete and continuous mixtures, and their application in capturing taste heterogeneity in populations.
Monte Carlo: Optimization and Estimation
Explores optimization and estimation in Monte Carlo methods, emphasizing Bayes-optimal groups and estimators.
Show more