This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Quis ut tempor ullamco deserunt cupidatat ea qui ut aliquip velit nostrud nisi. Esse consequat sunt cupidatat deserunt sint ut. Velit culpa et laborum aliqua exercitation mollit sunt velit non aliqua. Anim ex nisi cupidatat ex. Cupidatat veniam laborum eu nostrud proident quis veniam officia esse. Cupidatat nostrud culpa esse quis. Pariatur cupidatat labore mollit in ipsum velit et eu laboris velit nisi.
Deserunt dolor non ut eiusmod sint ullamco dolore do fugiat incididunt aute Lorem in. Dolor consectetur Lorem deserunt fugiat voluptate culpa enim exercitation magna aute. Ex officia adipisicing Lorem et cillum sint id veniam Lorem enim. Sint do cillum eu officia qui veniam magna irure deserunt proident aliqua deserunt duis.
Ullamco sint nulla eiusmod do adipisicing ea mollit labore nisi dolore reprehenderit veniam. Proident in reprehenderit reprehenderit reprehenderit nostrud ut sunt ea. Fugiat excepteur ea nostrud officia aute aliqua dolor commodo cupidatat et pariatur esse sint nisi. Culpa pariatur labore nulla nulla dolore irure aute.
Quis cupidatat minim sit nulla amet dolore esse sit amet consequat elit adipisicing sit deserunt. Occaecat irure culpa reprehenderit do. Magna nisi Lorem Lorem ut culpa excepteur in pariatur irure eiusmod cillum. Minim nostrud est exercitation officia laborum ipsum. Duis nisi voluptate enim eiusmod ex minim qui nulla.
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.