Lecture

Trigonometric Polynomials: Fourier Inversion and Plancherel Formulas

In course
DEMO: ut id mollit deserunt
Qui mollit laboris nisi id dolor minim ullamco. Pariatur do dolor dolore sit in non officia eiusmod eiusmod ex officia consectetur. Ea consequat est sunt nisi Lorem sunt. Amet eu ut deserunt consectetur nisi velit voluptate duis deserunt aliqua proident laboris magna. Ea tempor aliquip ut deserunt cupidatat elit labore commodo.
Login to see this section
Description

This lecture covers the properties and applications of trigonometric polynomials, focusing on the Fourier inversion formula and the Plancherel formula. The instructor explains the periodic convolution of functions and the Weierstrass approximation theorem for trigonometric polynomials.

Instructor
adipisicing laboris ea
Aute nisi culpa qui cupidatat dolor deserunt occaecat duis tempor velit ipsum est. Non enim aute non id nisi exercitation laborum tempor occaecat eiusmod. Esse in duis occaecat ullamco. Eu mollit pariatur eu nisi. Ullamco nisi aliqua incididunt voluptate veniam id esse veniam. Non in in nulla est consectetur est magna nostrud eiusmod deserunt cillum nostrud ex.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (86)
Convergence of Fourier Series
Explores the convergence of Fourier series in L² space with trigonometric polynomials and approximation theorems.
Harmonic Forms and Riemann Surfaces
Explores harmonic forms on Riemann surfaces, covering uniqueness of solutions and the Riemann bilinear identity.
Fourier Inversion Formula
Covers the Fourier inversion formula, exploring its mathematical concepts and applications, emphasizing the importance of understanding the sign.
Algebraic Kunneth Theorem
Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.
Harmonic Forms: Main Theorem
Explores harmonic forms on Riemann surfaces and the uniqueness of solutions to harmonic equations.
Show more