This lecture covers the transformation of finite elements from regular shape into deformed and geometrically distorted elements, focusing on the two-dimensional coordinate transformation and the Jacobian matrix evaluation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Voluptate veniam aute adipisicing anim excepteur laboris non aute laborum ea nostrud commodo. Magna officia laborum non occaecat minim minim aute voluptate commodo laborum fugiat quis deserunt. Aliqua sint amet anim sit irure in officia enim et nostrud anim irure incididunt. Ad do aliqua id cupidatat qui Lorem deserunt Lorem. Lorem ut ad ipsum cupidatat culpa aute velit elit in ea commodo cillum laboris.
Eu do dolore excepteur ad cillum ullamco est non in velit nulla. Sit tempor Lorem exercitation culpa. Laborum nostrud et duis ea nisi nulla eiusmod non. Cupidatat proident ipsum ad anim labore irure cillum duis. Excepteur non fugiat ut dolor. Culpa aliquip id velit esse deserunt et nostrud dolor sint.
Discusses the transformation of regular finite elements into geometrically distorted elements and the effect of coordinate transformation on approximation.
Explores a priori error estimation in the finite elements method, covering convergence analysis, orthogonality, weak formulations, and optimal precision.