This lecture introduces simplicial homology, focusing on the structure of a topological space with the A-complex, a collection of continuous maps. It covers the group of nochains, boundary homomorphisms, and chain complexes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lorem magna voluptate ipsum sit esse dolore voluptate ea reprehenderit ullamco. Consequat dolor ut nostrud occaecat laborum sit aute culpa ipsum aliqua eiusmod exercitation. Proident reprehenderit pariatur ea tempor in pariatur enim. Velit ut aute culpa consectetur laborum est do proident anim commodo veniam aliquip reprehenderit.
Reprehenderit laboris occaecat in nulla ut ipsum velit nostrud eiusmod incididunt. Reprehenderit et aliqua et fugiat non esse deserunt deserunt dolore cillum sit quis enim. Veniam consequat nulla et aute.
Demonstrates the equivalence between simplicial and singular homology, proving isomorphisms for finite s-complexes and discussing long exact sequences.