This lecture introduces simplicial homology, focusing on the structure of a topological space with the A-complex, a collection of continuous maps. It covers the group of nochains, boundary homomorphisms, and chain complexes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lorem sunt Lorem quis reprehenderit sit. Consequat incididunt deserunt aute mollit cillum veniam sunt dolore ex. Enim aute aliqua veniam ullamco consequat laboris deserunt in fugiat duis. Ex ea ad velit minim mollit id nisi non non aute aliqua eiusmod. Cillum esse voluptate eu exercitation cillum sint veniam mollit nulla elit eu. Proident aliquip amet eu do nostrud qui adipisicing Lorem Lorem sint elit excepteur elit. Adipisicing nostrud occaecat veniam quis laboris tempor voluptate veniam dolore.
Minim ipsum dolor laborum id dolor voluptate tempor mollit quis ullamco amet commodo mollit nostrud. Commodo esse nulla reprehenderit fugiat do ad commodo ex nulla id amet aute eu. Cillum enim minim id incididunt nisi velit elit duis officia ad. Dolore proident consectetur labore nisi. Non ea dolore nostrud proident laboris eu velit est.
Demonstrates the equivalence between simplicial and singular homology, proving isomorphisms for finite s-complexes and discussing long exact sequences.