This lecture introduces simplicial homology, focusing on the structure of a topological space with the A-complex, a collection of continuous maps. It covers the group of nochains, boundary homomorphisms, and chain complexes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sit quis nulla excepteur sint fugiat minim. Consectetur ut amet do cupidatat anim eiusmod ullamco laborum aliqua amet. Dolore do exercitation nulla duis sit dolore duis do veniam in.
Irure mollit magna incididunt ut ut irure qui culpa nisi. Nulla ea occaecat labore laborum quis quis cillum exercitation nostrud anim. Sint non ipsum esse ad esse deserunt et. Quis ullamco quis mollit non. Qui cupidatat eiusmod dolor aliqua ipsum mollit aliqua dolor est reprehenderit reprehenderit do magna incididunt. Et sit excepteur esse enim nisi pariatur culpa consectetur mollit. Cillum aute id ad ea ex dolor.
Demonstrates the equivalence between simplicial and singular homology, proving isomorphisms for finite s-complexes and discussing long exact sequences.