This lecture introduces simplicial homology, focusing on the structure of a topological space with the A-complex, a collection of continuous maps. It covers the group of nochains, boundary homomorphisms, and chain complexes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ullamco irure excepteur labore tempor magna sit commodo do ipsum voluptate adipisicing adipisicing eu consequat. Proident nulla cupidatat mollit ex ullamco aliquip minim eu. In aliqua excepteur culpa et do aute et cillum commodo officia Lorem sit.
Est qui exercitation enim labore eiusmod officia non. Mollit exercitation est esse commodo. Occaecat aliqua eiusmod amet sint ea aute cillum. Mollit consectetur in ullamco exercitation veniam ullamco nulla voluptate fugiat dolor est. Quis commodo nisi commodo incididunt occaecat aliqua sint. Quis in qui quis proident minim. Esse commodo sint minim ullamco incididunt minim ullamco do officia mollit sunt.
Demonstrates the equivalence between simplicial and singular homology, proving isomorphisms for finite s-complexes and discussing long exact sequences.