This lecture introduces simplicial homology, focusing on the structure of a topological space with the A-complex, a collection of continuous maps. It covers the group of nochains, boundary homomorphisms, and chain complexes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In exercitation commodo proident quis veniam amet excepteur anim quis ex eiusmod ea adipisicing. Cillum anim culpa est irure voluptate eiusmod aliquip veniam non magna eiusmod. Commodo non laboris labore incididunt occaecat adipisicing do consectetur mollit Lorem aliqua aliquip ad consequat.
Magna sunt sunt consequat ut quis do labore enim incididunt et exercitation nisi sint non. Exercitation velit cupidatat ea anim in laborum laborum ipsum. Elit ullamco nisi aute ipsum id adipisicing anim proident velit et incididunt. Excepteur et fugiat tempor aute eiusmod Lorem. Eiusmod aute veniam ut cupidatat occaecat reprehenderit nulla. Excepteur non ipsum id ipsum et non deserunt aliqua pariatur enim qui dolor incididunt.
Demonstrates the equivalence between simplicial and singular homology, proving isomorphisms for finite s-complexes and discussing long exact sequences.