Lecture

Matrix Rank: Row-Column Rank Relationship

Description

This lecture concludes the topic of matrix rank by exploring the relationship between the row rank and column rank of a matrix. The instructor explains how the column rank of a matrix is equal to the row rank of its transpose, illustrating this concept with examples and calculations. The lecture also covers the concept of linearly independent vectors and how it relates to the rank of matrices, providing insights into the dimensionality of column spaces. Additionally, the instructor introduces the notion of a base for the column space of a matrix, emphasizing its importance in understanding the structure of vector spaces.

In MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 3)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more
Instructor
ex incididunt fugiat cillum
Aute laborum proident officia pariatur id quis nulla cupidatat. Labore duis irure eu excepteur Lorem fugiat Lorem ex tempor exercitation ullamco cupidatat velit. Exercitation quis enim ullamco minim in est veniam ut consequat eiusmod cupidatat laborum. Et ipsum velit cupidatat ipsum anim quis ullamco culpa qui duis esse. Nisi qui qui sunt anim.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (21)
Matrix Similarity and Diagonalization
Explores matrix similarity, diagonalization, characteristic polynomials, eigenvalues, and eigenvectors in linear algebra.
Orthogonal Complement and Projection Theorems
Explores orthogonal complement and projection theorems in vector spaces.
Matrix Equations: Linear Combinations
Covers matrix equations as linear combinations, vector spaces, and geometric interpretations.
Linear Independence and Bases
Covers linear independence, bases, and coordinate systems with examples and theorems.
Polynomials: Operations and Properties
Explores polynomial operations, properties, and subspaces in vector spaces.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.