Lecture

Linear Algebra: Best Approximation and Properties

In course
DEMO: Lorem nisi adipisicing
Proident elit aliquip duis deserunt deserunt pariatur culpa. Pariatur quis do aute cillum adipisicing exercitation. Eu minim ea ut ipsum. Tempor sint commodo nisi do minim dolor labore velit. Aute sint est eiusmod nisi elit sit magna occaecat quis aliqua et labore anim. Deserunt veniam quis esse aliquip ullamco enim commodo sunt magna in. Ut reprehenderit duis exercitation do qui nulla sint tempor cillum nisi incididunt enim elit.
Login to see this section
Description

This lecture covers the concept of best approximation error in linear algebra, focusing on the properties of the Shiffnen matrix and the finite-dimensional space. It delves into the qualities of the matrix A, the Lagrangian functions, and the stiffnen matrix properties. The lecture also discusses the relationship between vectors in a finite-dimensional space and the approximation error. Various inequalities and matrix properties are explored, emphasizing the importance of symmetric matrices and positive definiteness.

Instructor
proident eiusmod amet exercitation
Id occaecat reprehenderit consequat irure aliqua qui nulla aute aliquip quis elit laboris enim ea. Dolore dolor labore irure qui qui laboris dolore anim in commodo irure. Nisi laboris anim elit cupidatat proident exercitation esse commodo qui qui ex magna mollit consequat. Id ea in ullamco quis pariatur nulla nostrud exercitation tempor aliquip ipsum. Aliquip tempor tempor sunt deserunt officia nostrud cupidatat esse do culpa excepteur tempor ex eiusmod.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (33)
Singular Value Decomposition: Applications and Interpretation
Explains the construction of U, verification of results, and interpretation of SVD in matrix decomposition.
Linear Algebra: Coordinate Systems
Explains bases, coordinates, and change of basis in linear algebra.
Characteristic Polynomials and Similar Matrices
Explores characteristic polynomials, similarity of matrices, and eigenvalues in linear transformations.
Singular Value Decomposition: Theoretical Foundations
Covers the theoretical foundations of Singular Value Decomposition, explaining the decomposition of a matrix into singular values and vectors.
Bilinear Forms: Theory and Applications
Covers the theory and applications of bilinear forms in various mathematical contexts.
Show more