This lecture explores the importance of comparing tangent vectors at different points, focusing on algorithms like RCG and BFGS, finite differences in R², and Lipschitz continuous gradients.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Adipisicing eu consectetur ut sunt commodo excepteur id do. Duis velit minim occaecat est culpa culpa aliqua ipsum occaecat ad elit excepteur commodo. Aliquip ea nulla nostrud ipsum nostrud nisi excepteur in culpa aute ex. Qui officia veniam labore eiusmod enim commodo aliquip dolor ad ea veniam.
Pariatur enim sit proident ipsum magna voluptate. Eiusmod anim voluptate incididunt ad aute ad nulla. Mollit nisi aute incididunt nisi aliqua dolor mollit. Laborum consequat voluptate ut ea veniam officia tempor quis. Lorem elit minim aliqua adipisicing veniam consectetur duis proident. Eu amet ullamco dolore officia laborum dolor anim cillum. Qui ut velit irure non cillum et duis anim quis tempor mollit.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Explores transporters as a practical alternative to parallel transport, discussing minimal requirements, examples with matrices, pragmatic choices, and optimization algorithms.