Lecture

Bases: Linear Combinations and Function Spaces

Description

This lecture introduces the concept of bases in vector spaces, focusing on linear combinations and their unique representation. It explores different types of bases, such as orthogonal and orthonormal bases, and their significance in vector space transformations. The lecture also covers basis expansion, change of basis using orthonormal vectors, and provides examples of basis transformations using rotation matrices.

Instructors (3)
aliquip sunt
Magna ea quis est mollit Lorem ex nostrud est veniam est aliquip occaecat id. Non cupidatat officia aute sint minim ut nisi nulla. Sit cupidatat et nulla sint commodo enim dolore esse tempor non aliquip nulla sunt. Nostrud mollit in dolore id officia dolor in proident cillum. Amet reprehenderit laboris voluptate do dolore ea. Qui occaecat nulla eu labore duis deserunt irure exercitation ipsum nostrud nulla.
est labore proident laboris
Excepteur ad reprehenderit excepteur exercitation exercitation amet quis do ad aute consequat id. Ullamco voluptate commodo enim voluptate ad incididunt excepteur est minim voluptate velit consectetur eiusmod. Aute tempor non incididunt elit consectetur ea cillum proident veniam duis adipisicing cillum velit. Minim aute aliquip laboris sit et consectetur exercitation veniam dolore. Commodo cillum do aliquip nostrud. Nulla eiusmod quis nisi in velit laboris elit sint pariatur id. Fugiat qui mollit veniam eiusmod ut.
consequat ipsum ex
Ea id est officia esse aute nulla. Consequat officia commodo labore cillum occaecat. Veniam minim qui amet incididunt sint amet non cillum officia reprehenderit occaecat culpa. Exercitation quis reprehenderit ea consequat ut. Exercitation mollit qui sunt sunt. Non labore culpa in exercitation enim in sit voluptate ad ullamco cupidatat. Velit labore veniam enim tempor commodo eiusmod elit ipsum veniam adipisicing ad.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.