In this work we present an extension of the continuous interior penalty method of Douglas and Dupont [Lecture Notes in Phys., Vol. 58 (1976) 207] to the incompressible Navier-Stokes equations. The method consists of a stabilized Galerkin formulation using equal order interpolation for pressure and velocity. To counter instabilities due to the pressure/velocity coupling, or due to high local Reynolds number, we add a stabilization term giving -control of the jump of the gradient over element edges (faces in 3D) to the standard Galerkin formulation. Boundary conditions are imposed in a weak sense using a consistent penalty formulation due to Nitsche. We prove energy type a priori error estimates independent of the local Reynolds number and give some numerical examples recovering the theoretical results.
Annalisa Buffa, Simone Deparis, Pablo Antolin Sanchez, Felipe Figueredo Rocha
Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino