Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present the study of the radiative penguin Bs0 → ϕγ and Bs0 → γγ decays and the resonant B+ → K+h → K+γγ decays. We use data samples recorded at the Υ(4S) and Υ(5S) resonances with the Belle detector at KEKB, an electron-positron collider located in Tsukuba, Japan. The Υ(4S) sample corresponds to an integrated luminosity of 492 fb-1 and contains 535 million BB pairs. At the Υ(5S) resonance, we use a sample of 23.6 fb-1 containing 2.8 million Bs0 mesons. Penguin decays are loop-induced diagrams involving the heaviest particles of the Standard Model, the model describing, successfully so far, all particles and interactions, except the gravitation. Penguin decays are sensitive to physics beyond the Standard Model: particles foreseen by theories extending the Standard Model, whatever their masses are, can enter the loop and modify physics observables away from their Standard Model expectations. We report the first observation of a radiative penguin decay of the Bs0 meson in the Bs0 → ϕγ mode with a significance of 5.5 standard deviations. We measure Β(Bs0 → ϕγ) = (57 -15+18 (stat) -11+12 (syst)) × 10-6 in agreement with the expectation of the Standard Model. We do not observe any significant Bs0 → γγ signal and we compute an upper limit at the 90% confidence level on its branching fraction of Β(Bs0 → γγ) < 8.7 × 10-6. This limit is about six times more stringent than the previously published one. However, it is still about one order of magnitude larger than the expectation of the Standard Model and still above expectations of theories beyond the Standard Model. For the resonant B+ → K+h → K+γγ decays, we search for decays where the h particle can be a η, η', ηc, ηc(2S), χc0, χc2 or a J/ψ meson, or the X(3872) particle discovered in 2003 by the Belle collaboration. We observe the modes with h = η and η'. We obtain an evidence of the mode with h = ηc; this is the first time that a B+ → K+ηc signal is seen in the K+ γγ final state. We measure Β(B+ → K+η → K+γγ) = (0.87 -0.15+0.16 (stat) -0.07+0.10 (syst)) × 10-6, Β(B+ → K+η' → K+γγ) = (1.40 -0.15+0.16 (stat) -0.12+0.15 (syst)) × 10-6, Β(B+ → K+ηc → K+γγ) = (0.22 -0.07+0.09 (stat) -0.02+0.04 (syst)) × 10-6, with significances of 7.3, 13.8 and 4.1, respectively. For the other modes, we obtain limits on their branching fractions. We also measure or set limits on the branching fractions of the h → γγ decays for the modes where Β(B+ → K+h) has been measured elsewhere. We set for the first time an upper limit at the 90% confidence level on the branching fraction of the decay of the X(3872) particle into two photons of Β(X(3872) → γγ) < 1.1%.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer