Publication

Dealing with singularities in nonlinear unconstrained optimization

Abstract

We propose a new trust region based optimization algorithm for solving unconstrained nonlinear problems whose second derivatives matrix is singular at a local solution. We give a theoretical characterization of the singularity in this context and we propose an iterative procedure which allows to identify a singularity in the objective function during the course of the optimization algorithm, and artificially adds Curvature to the objective function. Numerical tests are performed on a set of unconstrained nonlinear problems, both singular and non-singular. Results illustrate the significant performance improvement compared to classical trust region and filter algorithms proposed in the literature. The approach is also shown to be competitive with tensor methods in terms of efficiency while reaching a higher level of robustness. (C) 2008 Elsevier B.V. All rights reserved

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.