vignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint
L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive).
La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions. Cette généralité est motivée par le fait que certaines méthodes de construction de problèmes d'optimisation convexe conduisent à des problèmes non différentiables (fonction marginale, dualisation de contraintes, etc). Si cette généralité est un atout, permettant de prendre en compte davantage de problèmes, l'abord de la théorie est également plus difficile.
L'optimisation convexe repose sur l'analyse convexe.
L'optimisation convexe est un type d'optimisation mathématique, c'est-à-dire une discipline qui étudie des problèmes du type : optimiser une fonction donnée dans un espace donné.
Elle généralise l'optimisation linéaire et l'optimisation semi-définie positive, mais aussi l'optimisation conique et l'optimisation copositive.
Soit un espace vectoriel. Un problème d'optimisation convexe consiste à minimiser une fonction convexe sur , ce que l'on écrit d'une des manières suivantes :
Si on note
le domaine (effectif) de , le problème est identique à celui de minimiser sur :
Si , c'est-à-dire si , cette expression est encore valable puisque, par convention, . L'intérêt d'avoir une fonction pouvant prendre la valeur est donc d'introduire des contraintes dans le problème de minimisation (on oblige la solution du problème à être dans ).
Une solution (globale) du problème est un point tel que
Clairement, si prend la valeur , on a ; et si n'est pas identiquement égale à , on a .
Si est un espace vectoriel topologique, est une solution locale du problème si
En réalité une solution locale est une solution globale au sens précédent.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
Provide an introduction to the theory and practice of Model Predictive Control (MPC). Main benefits of MPC: flexible specification of time-domain objectives, performance optimization of highly complex
This course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marke
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP
En mathématiques, et plus particulièrement en analyse, la méthode des multiplicateurs de Lagrange permet de trouver les points stationnaires (maximum, minimum...) d'une fonction dérivable d'une ou plusieurs variables, sous contraintes. On cherche à trouver l'extremum, un minimum ou un maximum, d'une fonction φ de n variables à valeurs dans les nombres réels, ou encore d'un espace euclidien de dimension n, parmi les points respectant une contrainte, de type ψ(x) = 0 où ψ est une fonction du même ensemble de départ que φ.
Lalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
This paper develops a fast algorithm for computing the equilibrium assignment with the perturbed utility route choice (PURC) model. Without compromise, this allows the significant advantages of the PURC model to be used in large-scale applications. We form ...
Explore l'optimisation avec des contraintes en utilisant les conditions KKT et l'algorithme de point intérieur sur deux exemples de programmation quadratique.
Orthogonal group synchronization is the problem of estimating n elements Z(1),& mldr;,Z(n) from the rxr orthogonal group given some relative measurements R-ij approximate to Z(i)Z(j)(-1). The least-squares formulation is nonconvex. To avoid its local minim ...