The catabolism of cholesterol into bile acids is regulated by oxysterols and bile acids, which induce or repress transcription of the pathway's rate-limiting enzyme cholesterol 7alpha-hydroxylase (CYP7A1). The nuclear receptor LXRalpha binds oxysterols and mediates feed-forward induction. Here, we show that repression is coordinately regulated by a triumvirate of nuclear receptors, including the bile acid receptor, FXR; the promoter-specific activator, LRH-1; and the promoter-specific repressor, SHP. Feedback repression of CYP7A1 is accomplished by the binding of bile acids to FXR, which leads to transcription of SHP. Elevated SHP protein then inactivates LRH-1 by forming a heterodimeric complex that leads to promoter-specific repression of both CYP7A1 and SHP. These results reveal an elaborate autoregulatory cascade mediated by nuclear receptors for the maintenance of hepatic cholesterol catabolism.
Suliana Manley, Beat Fierz, David Michael Suter, Christian Sieben, Aleksandr Benke, Andrea Callegari
Johan Auwerx, Lulu Liu, Wei Zhang, Yao Zhang, Na Zhang
Johan Auwerx, Kristina Schoonjans, Bernard Schneider, Graham Knott, Davide D'Amico, Vera Monica Lemos Da Silva, Mario Romani, Hao Li, Vincenzo Sorrentino, Adrienne Joëlle Laurence Mottis, Francesca Potenza