Publication

Support Recovery in Compressed Sensing: An Estimation Theoretic Approach

Abstract

Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several information- theoretic bounds on the scaling law of the required number of measurements for exact support recovery have been derived, where the focus is mainly on random measurement matrices. In this paper, we investigate the support recovery problem from an estimation theory point of view, where no specific assumption is made on the underlying measurement matrix. By using the Hammersley- Chapman-Robbins (HCR) bound, we derive a fundamental lower bound on the performance of any unbiased estimator which provides necessary conditions for reliable 2\ell_2 -norm support recovery. We then analyze the optimal decoder to provide conditions under which the HCR bound is achievable. This leads to a set of sufficient conditions for reliable 2\ell_2-norm support recovery.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.