Publication

Path integral evaluation of the equilibrium isotope effect in [1,5] sigmatropic hydrogen shift reactions

Jiri Vanicek, Tomas Zimmermann
2009
Journal paper
Abstract

The path integral methodology for computation of the equilibrium isotope effect is described and applied to three [1,5] sigmatropic hydrogen shift reactions. An efficient estimator for the derivative of the free energy is used, which shortens the computation time by the factor of about 60. Calculations reveal that the correction beyond the usual harmonic approximation for nuclear motion amount up to 30 % of the symmetry reduced reaction free energy. The numerical results are compared with recent experiments of Doering and coworkers, confirming the accuracy of the most recent measurement as well as concerns about compromised accuracy, due to side reactions, of another measurement.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Chemical reaction
A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei (no change to the elements present), and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.
Gibbs free energy
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as where p is pressure, T is the temperature, U is the internal energy, V is volume, H is the enthalpy, and S is the entropy.
Helmholtz free energy
In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.
Show more
Related publications (33)

Anisotropic Adaptive Finite Elements for a p-Laplacian Problem

Marco Picasso, Paride Passelli

The p-Laplacian problem -del & sdot; ((mu + |del u|(p-2))del u) = f is considered, where mu is a given positive number. An anisotropic a posteriori residual-based error estimator is presented. The error estimator is shown to be equivalent, up to higher ord ...
Walter De Gruyter Gmbh2024

Low-Rank Tensor Approximations for Solving Multimarginal Optimal Transport Problems\ast

Daniel Kressner

By the addition of entropic regularization, multimarginal optimal transport problems can be trans-formed into tensor scaling problems, which can be solved numerically using the multimarginal Sinkhorn algorithm. The main computational bottleneck of this alg ...
SIAM PUBLICATIONS2023

An equilibrated flux a posteriori error estimator for defeaturing problems

Annalisa Buffa, Denise Grappein, Rafael Vazquez Hernandez, Ondine Gabrielle Chanon

An a posteriori error estimator based on an equilibrated flux reconstruction is proposed for defeaturing problems in the context of finite element discretizations. Defeaturing consists in the simplification of a geometry by removing features that are consi ...
2023
Show more
Related MOOCs (12)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more