We perform a general study about the existence of non-supersymmetric minima with vanishing cosmological constant in supergravity models involving only chiral superfields. We study the conditions under which the matrix of second derivatives of the scalar potential is positive definite. We show that there exist very simple and strong necessary conditions for stability that constrain the Kahler curvature and the ratios of the supersymmetry-breaking auxiliary fields defining the Goldstino direction. We then derive more explicitly the implications of these constraints in the case where the Kahler potential for the supersymmetry-breaking fields is separable into a sum of terms for each of the fields. We also discuss the implications of our general results on the dynamics of moduli fields arising in string compactifications and on the relative sizes of their auxiliary fields, which are relevant for the soft terms of matter fields. We finally comment on how the idea of uplifting a supersymmetric AdS vacuum fits into our general study.
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Leonardo Cristella, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Davide Di Croce, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer