Summary
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way. Like all covariant approaches to quantum gravity, supergravity contains a spin-2 field whose quantum is the graviton. Supersymmetry requires the graviton field to have a superpartner. This field has spin 3/2 and its quantum is the gravitino. The number of gravitino fields is equal to the number of supersymmetries. The first theory of local supersymmetry was proposed by Dick Arnowitt and Pran Nath in 1975 and was called gauge supersymmetry. The first model of 4-dimensional supergravity (without this denotation) was formulated by Dmitri Vasilievich Volkov and Vyacheslav A. Soroka in 1973, emphasizing the importance of spontaneous supersymmetry breaking for the possibility of a realistic model. The minimal version of 4-dimensional supergravity (with unbroken local supersymmetry) was constructed in detail in 1976 by Dan Freedman, Sergio Ferrara and Peter van Nieuwenhuizen. In 2019 the three were awarded a special Breakthrough Prize in Fundamental Physics for the discovery. The key issue of whether or not the spin 3/2 field is consistently coupled was resolved in the nearly simultaneous paper, by Deser and Zumino, which independently proposed the minimal 4-dimensional model. It was quickly generalized to many different theories in various numbers of dimensions and involving additional (N) supersymmetries. Supergravity theories with N>1 are usually referred to as extended supergravity (SUEGRA). Some supergravity theories were shown to be related to certain higher-dimensional supergravity theories via dimensional reduction (e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.