Publication

Hedlund metrics and the stable norm

Madeleine Jotz
2009
Article
Résumé

The real homology of a compact Riemannian manifold M is naturally endowed with the stable norm. The stable norm on H-1 (M. R) arises from the Riemannian length functional by homogenization. It is difficult and interesting to decide which norms on the finite-dimensional vector space H-1 (M,R) are stable norms of a Riemannian metric on M. If the dimension of M is at least three, I. Babenko and F. Balacheff proved in [I. Babenko, F Balacheff, Sur la forme de la boule unite de la norme stable uniclimensionnelle, Manuscripta Math. 119 (3) (2006) 347-358] that every polyhedral norm ball in H I (M, R), whose vertices are rational with respect to the lattice of integer classes in HI(M,R), is the stable norm ball of a Riemannian metric on M. This metric can even be chosen to be conformally equivalent to any given metric. In [I. Babenko, F. Balacheff, Sur la forme de la boule unite de la norme stable uniclimensionnelle, Manuscripta Math. 119 (3) (2006) 347-358], the stable norm induced by the constructed metric is computed by comparing the metric with a polyhedral one. Here we present an alternative construction for the metric. which remains in the geometric framework of smooth Riemannian metrics. (C) 2009 Elsevier B.V. All rights reserved.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.