En mathématiques, et plus précisément en géométrie, la variété riemannienne est l'objet de base étudié en géométrie riemannienne. Il s'agit d'une variété, c'est-à-dire un espace courbe généralisant les courbes (de dimension 1) ou les surfaces (de dimension 2) à une dimension n quelconque, et sur laquelle il est possible d'effectuer des calculs de longueur. En termes techniques, une variété riemannienne est une variété différentielle munie d'une structure supplémentaire appelée métrique riemannienne permettant de calculer le produit scalaire de deux vecteurs tangents à la variété en un même point. Cette métrique permet de définir la longueur d'un chemin entre deux points de la variété, puis les géodésiques qui répondent à un problème de plus court chemin. Les concepts fondamentaux qu'on associe à la variété riemannienne sont la connexion de Levi-Civita et la courbure. Une variété riemannienne est la donnée d'une variété différentielle et, en chaque point , d'une forme quadratique définie positive sur l'espace tangent avec des hypothèses de régularité supplémentaires. Les espaces tangents sont des espaces euclidiens. Les hypothèses de régularité s'énoncent de deux manières équivalentes : L'application est une section globale de classe C du fibré vectoriel ; Pour tous champs de vecteurs de , l'application est de classe C. La donnée est appelée métrique riemannienne sur . Les métriques riemanniennes existent sur toute variété différentielle (paracompacte) et forment un cône convexe fermé de (avec des topologies raisonnables). Si et sont deux variétés riemanniennes, une isométrie locale est une application différentiable vérifiant . Autrement dit, les différentielles sont des applications linéaires isométriques. Par le théorème d'inversion locale, toute isométrie locale est un difféomorphisme local. Une isométrie (globale) est une isométrie locale bijective. Les variétés riemanniennes sont les exemples les plus élémentaires de variétés de Finsler.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (28)
Variété (géométrie)
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Variété différentielle
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Théorème de plongement de Nash
En géométrie différentielle, le théorème de plongement de Nash, dû au mathématicien John Forbes Nash, affirme que toute variété riemannienne peut être plongée de manière isométrique dans un espace euclidien. « De manière isométrique » veut dire « conservant la longueur des courbes ». Une conséquence de ce théorème est que toute variété riemannienne peut être vue comme une sous-variété d'un espace euclidien. Il existe deux théorèmes de plongement de Nash : Le premier (1954), portant sur les variétés de classe C1.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.