vignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne
La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien. La géométrie riemannienne étend les méthodes de la géométrie analytique en utilisant des coordonnées locales pour effectuer les calculs dans des domaines spatiaux limités, mais elle recourt fréquemment aux outils de la topologie pour passer à l'échelle de l'espace entier. De façon précise, la géométrie riemannienne a pour but l'étude locale et globale des variétés riemanniennes, c'est-à-dire les variétés différentielles munies d'une métrique riemannienne, voire des fibrés vectoriels riemanniens.
Les concepts les plus notables de la géométrie riemannienne sont la courbure de l'espace étudié et les géodésiques, courbes résolvant un problème de plus court chemin sur cet espace.
Il existe aussi des variétés pseudo-riemanniennes, généralisant les variétés riemanniennes, qui en restent assez proches par bien des aspects, et qui permettent notamment de modéliser l'espace-temps en physique.
Pendant de nombreux siècles, le cadre naturel de la géométrie est la géométrie euclidienne du plan ou de l'espace. Les infructueuses tentatives de démonstration du postulat des parallèles ont aidé les géomètres à imaginer les moyens de dépasser ce cadre. Ainsi Lobatchevski en 1829 et Bolyai en 1832 introduisent les premiers exemples de géométrie non euclidienne. Les espaces à géométrie hyperbolique qu'ils construisent sont maintenant vus comme des cas particuliers de variétés riemanniennes "à courbure négative".
Quelques années auparavant, Gauss étudie la géométrie différentielle des surfaces de l'espace euclidien.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
We will discuss the basic structure of Lie groups and of their associated Lie algebras along with their finite dimensional representations and with a special emphasis on matrix Lie groups.
La géométrie riemannienne est un (peut-être le) chapitre central de la géométrie différentielle et de la géométriec ontemporaine en général. Le sujet est très riche et ce cours est une modeste introdu
This course will serve as a first introduction to the geometry of Riemannian manifolds, which form an indispensible tool in the modern fields of differential geometry, analysis and theoretical physics
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
En géométrie, une géodésique est la généralisation d'une ligne droite du plan ou de l'espace euclidien, au cadre des surfaces, ou plus généralement des variétés ou des espaces métriques. Elles sont étroitement liées à la notion de plus court chemin relativement à un calcul de distance sur un tel espace. Ainsi, le plus court chemin (ou les plus courts chemins, s'il en existe plusieurs), entre deux points est toujours une géodésique. Mais plus précisément, on appelle géodésique une courbe qui, à l'échelle locale, relie les points en minimisant la distance.
En géométrie, et plus particulièrement en géométrie différentielle, le tenseur métrique est un tenseur d'ordre 2 permettant de définir le produit scalaire de deux vecteurs en chaque point d'un espace, et qui est utilisé pour la mesure des longueurs et des angles. Il généralise le théorème de Pythagore. Dans un système de coordonnées donné, le tenseur métrique peut se représenter comme une matrice symétrique, généralement notée , pour ne pas confondre la matrice (en majuscule) et le tenseur métrique g.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
In Proton Exchange Membrane Fuel Cells (PEMFCs), the presence of residual water within the Gas Diffusion Layer (GDL) poses challenges during cold starts and accelerates degradation. A computational model based on the Lattice Boltzmann Method (LBM) was deve ...
In this thesis, we concentrate on advancing high-level behavioral control policies for robotic systems within the framework of Dynamical Systems (DS). Throughout the course of this research, a unifying thread weaving through diverse fields emerges, and tha ...
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...