Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Magnetars(1) are young neutron stars with very strong magnetic fields of the order of 10(14)-10(15) G. They are detected in our Galaxy either as soft gamma-ray repeaters or anomalous X-ray pulsars. Soft gamma-ray repeaters are a rare type of gamma-ray transient sources that are occasionally detected as bursters in the high-energy sky(2-4). No optical counterpart to the gamma-ray flares or the quiescent source has yet been identified. Here we report multi-wavelength observations of a puzzling source, SWIFT J195509+261406. We detected more than 40 flaring episodes in the optical band over a time span of three days, and a faint infrared flare 11 days later, after which the source returned to quiescence. Our radio observations confirm a Galactic nature and establish a lower distance limit of similar to 3.7 kpc. We suggest that SWIFT J195509+261406 could be an isolated magnetar whose bursting activity has been detected at optical wavelengths, and for which the long- term X- ray emission is short- lived. In this case, a new manifestation of magnetar activity has been recorded and we can consider SWIFT J195509+261406 to be a link between the 'persistent' soft gamma-ray repeaters/anomalous X- ray pulsars and dim isolated neutron stars.
Marcos Rubinstein, Antonio Sunjerga, Amirhossein Mostajabi